
 

ForceBoard: Subtle Text Entry Leveraging Pressure 
Mingyuan Zhong1     Chun Yu123†     Qian Wang12     Xuhai Xu1      Yuanchun Shi123 

1 Department of Computer Science and Technology 
2 Key Laboratory of Pervasive Computing, Ministry of Education  

3 Global Innovation eXchange Institute, Tsinghua University, Beijing, 100084, China 
{zhongmy14, q-wang14, xxh14}@mails.tsinghua.edu.cn, {chunyu, shiyc}@tsinghua.edu.cn 

 
ABSTRACT 
We present ForceBoard, a pressure-based input technique 
that enables text entry by subtle finger motion. To enter text, 
users apply pressure to control a multi-letter-wide sliding 
cursor on a one-dimensional keyboard with alphabetical 
ordering, and confirm the selection with a quick release. We 
examined the error model of pressure control for successive 
and error-tolerant input, which was incorporated into a 
Bayesian algorithm to infer user input. A user study showed 
that, after a 10-minute training, the average text entry rate 
reached 4.2 WPM (Words Per Minute) for character-level 
input, and 11.0 WPM for word-level input. Users reported that 
ForceBoard was easy to learn and interesting to use. These 
results demonstrated the feasibility of applying pressure as 
the main channel for text entry. We conclude by discussing 
the limitation, as well as the potential of ForceBoard to 
support interaction with constraints from form factor, social 
concern and physical environments.  
Author Keywords 
Pressure input; text entry; one-dimensional input.  

ACM Classification Keywords 
H5.2. Information interfaces and presentation: User inter- 
faces — Input devices and strategies.   
INTRODUCTION 
Nowadays, touchscreen-based software keyboards are the 
main facility for text entry on mobile and wearable devices. 
However, there are circumstances when this method is 
inadequate due to various restrictions, such as technical 
restriction (e.g., typing on a wet touchscreen), spatial 
restriction (e.g., typing on a smartwatch or a smart 
wristband), social restriction (e.g., typing a short message 
during a meeting), and physical restriction (e.g., putting 
hands in a pocket).  

In this paper, we present ForceBoard, a pressure-based input 
technique that enables text entry by subtle motion. As shown 

in Figure 1, the display interface of ForceBoard contains a 
one-dimensional keyboard with alphabetical ordering and a 
multi-letter-wide sliding cursor on it. To select a letter, users 
apply pressure to move the cursor across the keyboard and 
perform a quick release (reducing pressure quickly but not 
lift off the finger) to confirm the selection. We deem 
ForceBoard as a potential solution for the aforementioned 
restrictive interaction scenarios, considering its space-saving 
feature and subtle movement of the finger.  

 
Figure 1. The experiment interface in the pilot study. Only the 
alphabetical layout and a 5-letter-wide cursor are presented. 
The orange window is the sliding cursor to select letters, whose 
position is depended on the pressure level. 

To understand users’ ability of pressure control in the context 
of text entry, we carried out an independent experiment to 
obtain the error model of pressure control for successive and 
error-tolerant input, which was then incorporated into the 
statistical decoding algorithm to interpret user input. 
Meanwhile, tactile feedback was employed to facilitate 
pressure control and to reduce the requirement for visual 
attention. We also design ForceBoard to support the input of 
individual letters, numbers, and punctuations.  

To evaluate the performance of ForceBoard, we conducted a 
lab study with twelve participants, where both character-
level and word-level input performance were tested. Results 
showed that after 10-minutes practicing with ForceBoard, 
users could type 4.2 WPM (words per minute) for character-
level input (error rate: 1.1%), and 11.0 WPM for word-level 
input (error rate: 0.5%). The obtained input speed (11.0 WPM) 
was significantly faster than prior one-dimensional text entry 
techniques [3, 29]. Subjective user feedback revealed that 
ForceBoard was easy to learn and interesting to use. In 
conclusion, our research for the first time demonstrates the 
feasibility of applying pressure as the main channel for text 
entry, which is useful for subtle interaction when one is in 
interaction restrictive settings.  
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RELATED WORK 
We summarize relevant work from three aspects: human 
ability of pressure control, pressure as an input modality, text 
entry on constraint interfaces. 

Ability of Pressure Control  
Previous works have studied human’s ability to control 
pressure. Mizobuchi et al. [11] found that users had the 
ability to accurately distinguish 6 levels of pressure intensity 
using a stylus. Wilson et al. [24] reported that, with adequate 
feedback, users could even distinguish pressure intensity up 
to 10 levels. Wang et al. [22] investigated the maintenance 
accuracy when applying pressure on a sensor with a probe 
ranging from 0.5N to 5N. The results showed that the 
absolute error linearly increased as the pressure increased, 
while the relative error was greatest when pressure was 0.5N. 
Ramos et al. [12] reported that it was difficult to control 
pressure accurately when pressure intensity was small. Yin 
et al. [27] quantified the pressure used for tasks interaction. 
They reported that normal tasks such as drawing and writing 
had a pressure sized from 0.82N to 3.16N, while the resting 
pressure was between 0.78 N and 1.58 N. The change of error 
rate was found from 4.9% for one layer of pressure to 35% 
for six layers of pressure. These results pointed out the 
challenge of using pressure to select a letter (1/26) on a 
keyboard.  

Researchers have found that visual feedback was important 
to ensure the high accuracy and low variance to select a 
pressure target, that is, to apply pressure of a required amount	
[12, 20, 22, 24, 27]. Besides, there are two methods to select 
a pressure widget on a pressure-based interface: Dwell and 
Quick-Release. Results showed that Quick-Release provided 
faster response speed while Dwell demonstrated higher 
response accuracy [1, 12, 24]. Stewart et al. [20] examined 
different transfer functions mapping pressure values to input 
values, including linear [12], quadratic [2], and fish-eye [18], 
and found linear function outperformed the other functions. 
In our solution, we adopt the Quick-Release and linear 
transfer function to build the ForceBoard.  
Pressure & Text 
Various pressure-based interaction techniques have been 
proposed in literature, such as menu selection [2, 12, 25], 
navigation [19, 26], zooming in/out [13, 14], scrolling [9, 
15], multiple controls [7], and so on. We direct users to [9, 
26] for an overview of them.  

Pressure has also been utilized in text entry, but merely as an 
auxiliary channel. Brewster et al. [1] proposed a novel way 
to allow users to specify the case of letters with pressure on 
soft keyboards, by applying soft pressure to indicate lower 
case and a hard pressure to indicate upper case. PressureText 
[10] allows users to select a letter on ambiguous keyboard 
with three levels of pressure. On the other hand, ForceType 
[23] enables users to explicitly control the uncertainty of 
touch via touch pressure. This enables users to control over 
the relative influence of the language model in the statistical 
decoding.  

Touch-based Text Entry 
Touch-based text entry on smart devices have traditionally 
adopted a QWERTY or QWERTY-like layout, with a tap or 
gesture-based interaction scheme on a touch surface. Reyal 
et al. [16] studied the performance of Smart Touch Keyboard 
(STK) and Smart Gesture Keyboard (SGK) using Google 
Keyboard in the wild, where text entry rates reached 31.1 
wpm for the STK and 39.1 wpm for the SGK. WatchWriter 
[6] implements touch and gesture typing on a smart watch, 
reaching 22 wpm for the STK and 24 wpm for the SGK. 
1Line keyboard [3] condenses the QWERTY keyboard into 
a line with eight ambiguous keys, and reaches 30 wpm on 
tablet computers. Compared with ForceBoard, touch-based 
QWERTY keyboards are 2~3 times faster, but also require 
larger area for input and movement of fingers. Therefore, we 
recognize ForceBoard as an alternative solution when the 
input surface or allowed finger movement is limited. 
Text Entry on Constraint Interface 
Recently, text entry techniques on constraint user interfaces 
are emerging. Rotext [21] allows users to input on a circular 
keyboard with a rotation device. Text entry rate of 12.6 WPM 
was recorded at the beginning usage and could increase to 21 
WPM with extensive training. SwipeZone [3] allows users to 
input characters on the smart glass with gestures, and text 
entry rate was 8.73 WPM. SWIM [27] employs the tilting of 
the device to move the swiping cursor on the QWERTY 
keyboard. It reaches 15 WPM text entry rate. 1D Handwriting 
[29] allows users to handwrite on the side touchpad of smart 
glasses, by projecting 2D strokes into 1D space. The input 
speed was 4.67 WPM for character-level input and 9.72 WPM 
for word-level input.  

ForceBoard shares a similar visual design with a scanning 
keyboard [16], which is specially designed for augmentative 
and alternative communication (AAC). A scanning keyboard 
also has a linear keyboard layout and a moving cursor. But 
the input method is completely different: A cursor jumps 
periodically across letters; Users signal the selection when 
the desired key is selected. In contrast, users of ForceBoard 
actively apply pressure to control the position of the cursor 
to select a character.  

PILOT STUDY 
The pilot study aimed to examine feasibility of pressure-
based text entry and help decide a number of design choices, 
i.e., the keyboard layout, the selection method and the 
appropriate width of cursor that should be used.  

Participants and Apparatus 
We recruited eight participants from the local university 
campus. All participants had at least two years of experience 
with smart phones. Three of them owned a pressure-sensitive 
phone (iPhone 6S), but none of them have experience in 
using the pressure-based interaction.  

We implemented the experimental system on an iPhone 6s 
device, which had a pressure-sensitive touchscreen (size: 
4.7”; resolution: 1334×750). The range of pressure sensitive 
was reported to be 0‒0.38 N (0‒385 grams of force), with a 
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resolution of 0.01‒0.03 N (1‒3 grams of force). The system 
reported pressure data according to the pressure applied on 
the touchscreen.  

Design and Procedure 
The experiment was designed with three independent 
factors: 
1. keyboard layout: alphabetical A-Z, QWERTY, and 

ENBUD [21] 
2. Cursor width: 1, 3, 5, 7, and 9 letters 
3. Selection methods: Dwell and Quick Release. Users 

first move the cursor to the desired position. Then, users 
maintain pressure for 300ms in Dwell mode. In Quick 
Release mode, users release pressure immediately 
instead. 

Figure 1 shows one example of the keyboard design. We 
asked participants to move the cursor on each character and 
then release finger. Each of the conditions of the independent 
factors were tried and compared with each other. We 
observed user behaviors throughout the study, and gathered 
user reports after the study.  
Results 
All participants reported preference in using the alphabetical 
layout, and considered it to be the easiest to search for letters. 
We observed that users were not familiar with QWERTY or 
ENBUD in one-dimension, and users spent a much longer 
time in searching letters before input.  

We found it was almost impossible for users to input with 1-
letter-wide (1/26) cursor. 3-letter-wide (1/8) cursor also 
imposed a significant load on participants, which was 
reported to be uncomfortable and difficult to control. These 
results were consistent with past research [11]. Users were 
more satisfied with cursor whose width is no less than 5 
letters. However, the wider a cursor is, the more ambiguous 
it becomes. To determine the appropriate width of the cursor, 
we conducted a simulation using a language model 
containing the 10,000 most used words (with frequency for 
each word) from ANC (American National Corpus). Results 
showed that with the 9-letter-wide cursor (1/3), up to 14.5% 
of words would not show up in the top 5 candidates. In 
comparison, this number for the 7-letter-wide cursor (1/4) 
and 5-letter-wide (1/5) cursor was 3.6% and 0.5% 
respectively. Therefore, we deemed these two cursors as 
more promising. 

In consistent with previous research [2,12,24], users 
preferred Quick Release as it was much faster than Dwell, 
especially when the cursor was wide enough. Although 
Dwell was more accurate for input, it required more effort to 
maintain the pressure stability. In particular, we found that 
for inputting a serial of letters, users subjectively felt it was 
faster and tended to not lift off their finger between letters. 
We refer it as on-contact Quick Release in this paper, which 
was employed in ForceBoard.  

Based on the findings found in the pilot study, instead of 
designing a technique based on accurate selection of 

individual letters that caused significant delay of the input 
speed, we inclined to adopt the multi-letter-wide cursor, and 
take advantage of language models to resolve the ambiguity 
[5]. This decision placed higher priority on word input rather 
than individual character input. To support this decision, we 
assumed inputting words from a predefined lexicon 
represents the majority of daily text entry tasks. Similarly, 
many smart keyboards also leverage statistical decoding to 
auto-correct users’ input errors [5].  
STUDY 1: PRESSURE CONTROL FOR TEXT ENTRY 
Before we proceed to the design of ForceBoard, we conduct 
an independent study to obtain the error model of pressure 
control, which is an essential component of the statistical 
decoding algorithm to interpret user input. Although error 
model of pressure input has been studied by the past research, 
their objective emphasized only on accurate selection 
[11,24]. There is no research thus far take consideration of 
continuous and fast input, with a reasonable tolerance of 
inaccurate control.  

Apparatus and Participants 
We used the same apparatus as in the pilot study and 
recruited another fourteen participants (seven males and 
seven females, aged between 18 and 33, mean = 23.0). All 
participants had at least two years of experience with smart 
phones, and none of them had experience in using pressure-
based input technique before.  

 
Figure 2. The Wizard of Oz keyboard with cursor width as 7, 
used to collect users’ typing data 

The experimental system was modified from the one used in 
the pilot study. In this system, we displayed input tasks and 
input results. Participants held the phone with their dominant 
hand, and made pressure inputs with the thumb of the same 
hand. The system recorded all input events, including 
pressure and the time-stamp. Before having a concrete 
keyboard technique, we used a Wizard of Oz keyboard, 
which displayed a sequence of asterisks instead of letters to 
prevent users adjusting their input behavior according to the 
result displayed. This allowed us to identify the natural 
behavior of pressure control in text entry.  

Design and Procedure 
The within-subject factor was cursor-width (5 and 7 letters). 
The cursor-width is measured in terms of the width of one 
letter on the keyboard (about 1.8 mm). For each width, 78 
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arbitrary letter sequences were randomly generated, with 
each containing 3 letters that was easy to be memorized. In 
sum, each participant entered 234 letters where each letter in 
the English alphabet (A-Z) repeated 9 times.  

We asked participants to memorize each sequence, and then 
select each letter in sequence with on-contact Quick release. 
In other words, users applied pressure on the screen to move 
the cursor to the desired letters, select the letters by releasing 
pressure but not letting go of the finger off the screen, and 
repeated the procedure to select multiple letters. We told the 
participants to select letters promptly, without the need to 
fixate on specific letter.  
Results 
We investigate the pressure distribution of the user input 
around the target, as well as the input time and learnability 
of pressure input.  

Error Model of Pressure Control 
We define offset as the distance between the cursor location 
at Quick Release (the highest position of pressure) and the 
intended target center. Overshooting the target position 
results in a positive offset. The unit of offset is also the width 
of one letter on the keyboard. For each letter, data fallen 
outside three times the standard deviation were removed as 
outliers, which accounted for 1.5% of the data. Error model 
of pressure control was obtained based on the distribution of 
offset. Figure 3 shows the mean offset and the standard 
deviation of offset for each letter.  

  
Figure 3. Mean offset of each letter, with standard deviations 
shown as error bars. One unit of deviation corresponds to 1.8 
mm on the device. 

The mean offset decreased linearly as the position on the 
keyboard increased (cursor-width = 5: R2 = 0.81; cursor-
width = 7: R2 = 0.93), showing a decreasing tendency of users 
to overshoot as the expected pressure increased. RM-
ANOVA showed a decreasing trend of the mean offset as 
pressure increased (cursor-width = 5: F25,325 = 6.35, p<.001; 
cursor-width = 7: F25,325 = 11.85, p < .001). These findings 
were found consistent with the previous research [12]. 
However, we did not observe significant variation in the 
standard deviation of offset as force increased (cursor-width 
= 5: F25,325 = 1.35, p=.123; cursor-width = 7: F25,325 = 1.01, p 
= .456).  

Figure 4 shows the overall distribution of the offset by 
merging all data for the 7-letter-wide cursor together. This 
was done by offsetting the mean of distribution for each letter 
to zero. As shown in Figure 4, the overall distribution is 
slightly right-skewed, with a skewness of 0.67, where its 
standard deviation is 1.87 letters.  

 
Figure 4. Distribution of centered offset of all letters for the 7-
letter-wide cursor  

Occasionally, users overshot or undershot the target. The 
target missing rate was 7.7% for the 5-letter-wide cursor, and 
5.8% for the 7-letter-wide cursor. It was observed that when 
users noticed the overshoot, they tended to release pressure 
to make the cursor return to the intended letter. Therefore, 
the maximum pressure point was not always the intended 
position. This observation suggested the need to allow users 
to re-position the cursor if overshooting occurs.  

Input times 

  
Figure 5. Mean input time for each letter for the 5-letter-wide 
cursor and the 7-letter-wide cursor 

Figure 5 shows the mean input time for each letter A-Z. RM-
ANOVA showed significant effect of letter position on input 
time (F25,325 = 7.22, p < .001), which indicated that input time 
is increased when the required pressure is increased. The 
effect of cursor width on input time was not significant (F1,13 

= 1.30, p = .276). The average time for five-letter-wide 
cursor and seven-letter-wide cursor were 0.91 second (SD = 
0.58) and 0.86 second (SD = 0.52), respectively. 
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DESIGN AND IMPLEMENTATION OF FORCEBOARD 
Based on the findings of the pilot study and Study 1, we 
derived our final design and implementation of ForceBoard.  

Interaction Design 
The one-dimensional keyboard 
We divided the one-dimensional keyboard into three regions, 
as shown in Figure 6. The left region is for resetting of the 
cursor, which has a length of 5 letters. The middle region is 
for characters, including a space bar, letters in alphabetical 
ordering, and punctuation marks. The right region consisted 
of a delete button.  

  
Figure 6. One-dimensional keyboard layout for ForceBoard. 

ForceBoard employs two cursors: 1) a sliding cursor that 
always reflects the pressure level applied; and 2) a selection 
cursor (the orange underline), which indicates the letters that 
are recognized by the system.  

As the pressure increases, the selection cursor follows 
closely with the sliding cursor. When the pressure is quickly 
released to the reset region, the letters indicated by the 
selection cursor will become the input. However, if the user 
releases the pressure and dwells at a lower position for over 
300 ms, the selection cursor will be re-positioned to align 
with the sliding cursor. Then a quick release will result in the 
inputting of letters covered by the current selection cursor.  

 
Figure 7. Behavior of the sliding cursor (the box) and the selec-
tion cursor (the underline) during the selection process 

Input letters, words, numbers and punctuations  
To input a letter, a user first applies pressure to move the 
cursor over the intended letter, and then performs a quick 
release. Once the finger is lifted off the screen, the system 
displays candidate letters in descending order of probability 
according to the error model derived from Study 1. The first 
candidate is chosen by default. To select a different 
candidate, users can tap on the screen to select the next 

candidate, and long press to select the previous one. We 
found multiple taps were a faster and more accurate method 
to select a target than pressure-based selection.  

To input a word, user needs to repeatedly select letters of that 
word without lifting the finger off the screen. A list of words 
is updated in real-time as the user makes the inputs. Once the 
finger is lifted off the screen, the system leverages statistical 
decoding to interpret intended word and list a number of 
candidate words, from which users can select the intended 
word by taps. The same method can be used to select 
candidates from word list. For single-letter words such as “a” 
and “I”, an additional word “a␣” and “I␣” is displayed 
alongside their respective letter, indicating a choice between 
a word and a letter. A space is automatically added when 
entering the next word. Figure 8 shows an example of the 
pressure applied in order to input a word.  

 
Figure 8. The pressure a user made while inputting the word 
“force”. The five peaks in the light brown region each 
represents a pressure input for each letter in the word. Note 
that the user’s finger was continuously in contact with the 
surface (pressure greater than zero). The user then released 
the finger, and tapped three times (blue region) to select the 
word from candidates.  

To make a deletion, user makes a fast movement of the 
cursor to the right edge of the keyboard. This triggers a 
deletion with haptic feedback. If user triggers a deletion in 
the midst of entering a pressure sequence, a pressure inputted 
letter is deleted. However, if a deletion is made after a 
sequence is confirmed, the whole word is deleted.  

To input a number or a punctuation, user moves the cursor to 
the right, and dwells on the number and punctuation region. 
A list of numbers and punctuations will be shown as 
candidates. 

Word Prediction 
We leverage statistical decoding to interpret user input. The 
algorithm has two essential components, which are the error 
model we derived from Study 1, and a unigram language 
model. The basic idea is to compute the posterior probability 
of all words in a predefined language model given the 
observed user input, and rank them according to their 
probability. For the language model, we used the top 10,000-
word in the ANC, as described in the Pilot Study. The details 
of the algorithm are as follows.  
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Suppose user input a sequence of pressure (𝐼 = 𝑝$ …𝑝&). The 
posterior probability of a candidate word 𝑤 (𝑤 = 𝑙)𝑙* … 𝑙&) 
given input 𝐼 is 𝑃(𝑤|𝐼). According to Bayes Rule, we have 

𝑃(𝑤|𝐼) =
𝑃(𝑤) ∙ 𝑃(𝐼|	𝑤)

𝑃(𝐼) 	

where 𝑃(𝐼) is constant for all candidates and thus can be 
ignored. 𝑃(𝑤)  is the word frequency specified in the 
language model. Further, we suppose the pressure applied for 
each letter was independent. Thus, we have 

𝑃(𝐼|𝑤) =1𝑃(𝑝$|𝑙$)
&

$2)

 

where 𝑃(𝑝$|𝑙$)  represents the distribution of pressure for 
letter 𝑙$, which is derived from the error model we obtained 
from Study 1.  

To enable auto-completion, we modified the equation as  

𝑃(𝑤, 𝐼) = 𝑃(𝑤) ∙1𝑃(𝑝$|𝑙$)
&

$2)

∙ 𝜎56&  

where 𝜎 (0 < 𝜎 < 1, effective when 𝑚 > 𝑛) is a heuristic 
penalty term for avoiding long but frequent words 
dominating the candidate list. The predicted words are then 
sorted in descending order of their probability, and presented 
to the user.  

In addition, for OOV words, users can input them by 
selecting individual letters in sequence, in which case the 
prediction from the language model will not be calculated. 

STUDY 2: PERFORMANCE EVALUATION 
In Study 2, we aimed to evaluate the performance of 

ForceBoard. We tested its performance for both character-
level input and word-level input.  

   
Figure 9. The experiment interface for character-level input 
(left) and word-level input (right). A 7-letter-wide cursor was 
used in this experiment.  

Participants and Experiment Setup 
Twelve participants (six males and six females, ages 18‒27, 
mean = 21.9) were recruited from the local university 

campus. Four of them were regular users of devices equipped 
with pressure sensors, but none of them used the technology 
frequently.  

The experiment setting was similar to Study 1. In Study 2, 
we implemented the interaction design and the decoding 
algorithm as described before, and rendered a region for 
displaying the phrase to be entered (Figure 9).  

Design 
Participants were asked to type several given phrases. The 
experiment was designed into two sessions: character-level 
input in one session and word-level input in the other session.  

Character-level Input 
In the character-level session, participants were asked to 
finish the input of eight phrases letter by letter. The phrases 
were divided into four blocks, with two phrases in each 
block. Participants could have a one-minute break between 
each block. In this session, word-level text entry was 
disabled.  

Word-level Input 
In this session, the word-level text entry was turned on and 
participants need to type in 40 phrases. These phrases were 
also divided into four blocks, with 10 in each block. 

Note that the phrases were randomly sampled from 
MacKenzie and Soukoreff’s phrase set [6] that were 
averagely consisted of 25 letters or five words. Hence in both 
sessions participants had similar times of input letter or word 
selection. 

Procedure 
Before the experiment, participants were briefed about 
ForceBoard and the experiment objectives. Then participants 
spent two minutes on familiarizing with pressure input and 
the user interface. Before each session, participants received 
instructions regarding the relevant session, and input two 
phrases as a warm-up. During the experiment, participants 
were required to input “as quickly and accurately as 
possible”. After they finish each session, participants were 
asked to finish a questionnaire asking about their experience 
during typing. 

Results 
Error rates 
The average uncorrected error rates were 1.1% (SD = 4.4%) 
for character-level input and 0.47% (SD = 2.5%) for word-
level input. There was no significant effect of block on error 
rate for both conditions (character-level: F3,33 = 1.61, p = .21, 
word-level: F3,33 = 0.76, p = .52).  

The average corrected error rates were found 2.0% (SD = 
5.2%) for character-level input, and 1.8% (SD = 4.8%) for 
word-level input. The effect of block on corrected error rate 
was insignificant for word-level input (F3,33 = 0.72, p = .55), 
but significant for character-level input (F3,33 = 3.67, p = 
.023). For character-level input, corrected error rate was 
5.8% in the first block, and declined to 0.20% in the last 
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block. This indicated users could learn to input more 
accurately with practice. 

Text entry speed 
Figure 10 shows the text entry rate of ForceBoard for input. 
The calculation for text entry speeds included the time users 
spent on correcting errors. The average speed was 4.24 WPM 
for character-level input, and 11.04 WPM for word-level 
input. The mean text entry rate speeds achieved 4.42 WPM for 
the last two phrases for character-level input, and 12.80 WPM 
in word-level input. RM-ANOVA showed a significant main 
effect of block on the text entry rates for word-level input 
(F3,33 = 9.51, p = .0001), which demonstrated the learning 
effect. However, no significant effect of block was observed 
for character-level input (F3,33 = 1.55, p = .22). The best 
performer achieved 6.6 WPM for character-level input and 
17.5 WPM for word-level input.  

  
Figure 10. Average input speeds across 4 blocks. Error bars 
represent 95% confidence intervals. 

Time breakdown of word-level input 
We analyzed the time composition per key to provide 
insights into how users learn to interact with ForceBoard. To 
achieve this, we divided the input time for each character into 
three components: 1) pressing time (the time of pressure 
being applied from nearly zero to maximum); 2), release 
time (the time of pressure being released from maximum to 
nearly zero); and 3) reset time (the elapsed time between the 
release of the last letter and the application of the next letter).  

  
Figure 11. Word-level input time breakdown over blocks 

The mean values of pressing time, release time and reset time 
were 0.43 second (SD = 0.31), 0.22 second (SD = 0.18) and 
0.51 second (SD = 0.86) respectively. There were no 

significant effects of the block found on pressing time and 
release time. However, we observed a significant effect of 
block on reset time (F3,33 = 5.76, p = .003). The reset time 
generally decreased with block (Figure 11), with the last 
block at 23% faster (mean = 0.43 s, SD = 0.68 s) than the 
first block (mean = 0.56 s, SD = 0.95 s).  This suggested that 
users were getting better to seek keys across the keyboard 
after more practices.  

User Feedback 
Figure 12 shows the results of questionnaire. The questions 
were all answered on a 1-5 Likert Scale (1 not at all – 5 a lot). 
The results showed that the mental demand and frustration 
experienced while using ForceBoard were low (mental 
demand: M = 2.90, SD = 1.04; frustration: M = 2.54, SD = 
1.03). Five out of 12 participants explicitly commented that 
ForceBoard was easy to learn, and could be mastered in just 
a few minutes. Users rated the physical demand to be low (M 
= 2.73, SD = 1.19), suggesting that ForceBoard could be used 
without causing significant physical stress. Seven out of 12 
users also reported that ForceBoard was interesting to use, 
and that entering text with only subtle movements of the 
finger was convenient. In overall, participants liked the 
interaction style of ForceBoard, and rated an average score 
of 4.0 (SD = 0.45).  

 
Figure 12. Users’ subjective feedback of ForceBoard. Error 
bars represent standard deviation. 

APPLICATIONS 
To our knowledge, ForceBoard is the first in literature to 
leverage pressure control as a main input channel for text 
entry. ForceBoard presents a unique text entry method that 
requires only isometric pressure control of a finger. Our 
exploration successfully demonstrates the feasibility and 
performance of this novel typing method. Although the 
present research was conducted on an iPhone device, 
ForceBoard can also have several other application scenarios. 
We will discuss them below.  
Limited Form Factor of Device 
The most noteworthy feature of ForceBoard is that it requires 
only a single point for input. Therefore, it is especially 
valuable for smart devices of limited form factors. These 
include not only popular wearable devices such as 
smartwatches and smart wristbands, but also emerging and 

Character-level input Word-level input 
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future smart devices such as smart rings and pens. 
Meanwhile, the software interface of ForceBoard is also very 
compact. It has only a one-dimensional A-Z keyboard and a 
multi-letter width cursor. A calculation shows that the 7-
letter-wide cursor would be more than 5 mm wide on an 
Apple watch. This means that ForceBoard significantly saves 
on screen real estate, and can be deployed on devices with a 
very small screen.  

Subtle Movement of Fingers 
Using ForceBoard, finger movement is small due to the 
isometric pressure control. Thus, ForceBoard can be useful 
when subtle movement of the finger is preferred, for 
example, for users who are physically constrained (e.g., 
keeping hands in a pocket), users who does not want to be 
noticed (e.g., replying a short message in a meeting), and 
users who want to keep the input content secret (e.g., entering 
passcode on an ATM machine or a POS machine).  

Inaccessibility with Capacitive Touchscreens 
Currently, capacitive touchscreens are common on smart 
devices, such as mobile phones and smartwatches. However, 
they might function improperly in certain circumstances. For 
example, users wearing a glove cannot touch the screen; 
when the screen is dampened or contaminated (e.g., during 
cooking, painting, gardening), it will become insensitive or 
erroneous; capacitive sensing screens cannot work for 
underwater devices, such as underwater cameras. For all 
these cases, ForceBoard provides a potential solution, which 
requires only a pressure sensor.  

Compatibility with A Separate Display 
Unlike touch keyboard, ForceBoard is instinctively suitable 
for input-display separate settings (e.g., AR/VR helmets, 
smart glasses and distant display devices). For instance, 
during an immersive VR experience, users can easily input 
text with ForceBoard by applying pressure on the handheld 
controllers. Although in our experiments, we did not separate 
the input and display surfaces on iPhone, we argue that since 
users perform subtle finger movement on ForceBoard, 
looking down on the finger will provide little information. 
Therefore, it will not likely suffer from performance 
degradation with GUI shown on a separate display.  

LIMITATIONS AND FUTURE WORK 
Although effective, the text entry rate of ForceBoard is much 
slower than touch-based keyboards [3, 6, 16]. Therefore, we 
deem the practical value of ForceBoard should be limited to 
the restrictive interaction scenarios which we discuss above. 
Moreover, typing on ForceBoard requires continuous visual 
attention on the cursor in order to form close-loop feedback 
of pressure control. This is contrast to touch-based keyboard 
typing where users do not necessarily need to look at each 
key carefully but leverage muscle memory to input. This 
means more cognitive load is needed when typing on 
Forceboard. However, considering in suitable interaction 
scenarios of ForceBoard, users are more likely to perform 
short typing, this issue should not be serious.  

In addition, there are several limitations of this work, which 
we also see as opportunities for future work.  

First, we observed the learning effect of the ForceBoard 
through a short-term study with four blocks and 40 phrases 
in total. A longitudinal study may provide more 
comprehensive results on learning, physical fatigue, and 
mental stress, etc., and is worth exploring in the future.  

Second, previous work found that isometric rate control has 
a better performance than isometric position control [30]. In 
this research, we employed a position control method for the 
cursor movement in the ForceBoard. It remains as an 
interesting future question on how users’ performance and 
preference will change with the rate control techniques.  

Third, the word prediction algorithm can be upgraded in the 
future. For example, we can incorporate more sophisticated 
language models in the algorithm, which might provide more 
accurate candidates compared to the unigram language 
model.  
CONCLUSION 
In this paper, we present ForceBoard,	which allows users to 
type text with pressure with subtle motion movement of the 
finger. This pushes the limits of motion amplitude required 
for text entry. We conducted a series of user studies to 
determine the design strategies, including keyboard layout, 
width of cursor, feedback design, interaction logic and so on. 
In particular, we examined users’ ability to control pressure 
in a fast and inaccurate fashion. The empirical results and 
established error model of pressure control complemented 
prior research on modeling a person’s ability of accurate 
pressure control. Based on the results, we adapted a widely 
used statistical decoding algorithm to interpret pressure-
based text input. The results showed that after ten minutes of 
training, users could input 11 words per minute with 
ForceBoard. Meanwhile, subjective user feedback revealed 
that ForceBoard was easy to learn and interesting to use. We 
conclude by discussing potential applications of ForceBoard 
as well as its limitations.  
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