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ABSTRACT 
Explainable AI (XAI) has established itself as an important com-
ponent of AI-driven interactive systems. With Augmented Reality 
(AR) becoming more integrated in daily lives, the role of XAI also 
becomes essential in AR because end-users will frequently interact 
with intelligent services. However, it is unclear how to design efec-
tive XAI experiences for AR. We propose XAIR, a design framework 
that addresses when, what, and how to provide explanations of AI 
output in AR. The framework was based on a multi-disciplinary 
literature review of XAI and HCI research, a large-scale survey 
probing 500+ end-users’ preferences for AR-based explanations, 
and three workshops with 12 experts collecting their insights about 
XAI design in AR. XAIR’s utility and efectiveness was verifed via a 
study with 10 designers and another study with 12 end-users. XAIR 
can provide guidelines for designers, inspiring them to identify new 
design opportunities and achieve efective XAI designs in AR. 
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1 INTRODUCTION 
Breakthroughs in Artifcial Intelligence (AI) and Machine Learning 
(ML) have considerably advanced the degree to which interactive 
systems can augment our lives [127, 182]. As black-box ML models 
are increasingly being employed, concerns about humans misusing 
AI and losing control have led to the need to make AI and ML algo-
rithms easier for users to understand [25, 155]. This, in turn, has 
spurred rapidly growing interest into Explainable AI (XAI) within 
academia [11, 74, 130] and industry [2, 6, 22], and by regulatory en-
tities [1, 93, 94]. Earlier XAI research aims to help AI/ML developers 
on model debugging (e.g., [106, 140, 178, 179, 240]) or assist domain 
experts such as clinicians by revealing more information such as 
causality and certainty (e.g., [75, 129, 217, 222]). Recently, there has 
been a growing amount of XAI research focusing on the non-expert 
end-users [31, 74, 102]. Existing studies have found that XAI can 
help end-users resolve confusion and build trust [67, 170]. Industrial 
practitioners have started to integrate XAI into everyday scenarios 
and improve user experiences, e.g., by displaying the match rate of 
point-of-interest suggestions on map applications [135]. 

Alongside the surge of interest into XAI, Augmented Reality (AR) 
is another technology making its way into everyday living [5, 8]. 

https://doi.org/10.1145/3544548.3581500
https://doi.org/10.1145/3544548.3581500
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3581500&domain=pdf&date_stamp=2023-04-19


CHI ’23, April 23–28, 2023, Hamburg, Germany Xu et al. 

Figure 1: An Overview of XAIR Framework. (Left) An example of the AR interface with explanations. (Middle) The main 
structure of XAIR: the problem space and the key factors. (Right) Sensors that are integrated into AR. 

Advances in more lightweight, powerful, and battery-efcient Head-
Mounted Displays (HMDs) have brought us closer to the vision of 
pervasive AR [91]. As AI techniques are needed to enable context-
aware, intelligent, everyday AR [12, 58, 177], XAI will be essential 
because end-users will interact with outcomes of AI systems. XAI 
could be used to make intelligent AR behavior interpretable, resolve 
confusion or surprise when encountering unexpected AI outcomes, 
promote privacy awareness, and build trust. Therefore, we aim 
to answer the following research question: How do we create 
efective XAI experiences for AR in everyday scenarios? 

Researchers have developed several design spaces and frame-
works to guide the design of XAI outside the context of AR [25, 67, 
155, 217]. However, most previous work focused on identifying a 
taxonomy of explanation types or generation techniques. They did 
not consider everyday AR-specifc factors such as the rich sensory 
information that AR technologies have about users and contexts, 
and its always-on, adaptive nature. These factors can not only sup-
port more personalized explanations, but also afect the design of 
an explanation interface. For example, one could render in-place 
explanations on related objects (e.g., explaining a recipe recommen-
dation by highlighting ingredients in the fridge). In this paper, we 
provide a framework to guide the design of XAI in AR. 

To answer the aforementioned research question, a design space 
analysis [149] was used to break down the main research question 
into three sub-questions: 1) When to explain?, 2) What to explain?, 
and 3) How to explain? Previous research from the XAI and HCI 
communities has focused on one or two of these sub-questions (e.g., 
when [164, 183], what [25, 130]). Although not within the context 
of AR, many of these fndings can inform the design of XAI in AR. 
Therefore, we frst summarized related literature to identify the 
most important dimensions under each sub-question, as well as 
the factors that determine the answers to these questions, such as 
users’ goals for having explanations (i.e., why explain). Then, we 
conducted two complementary studies to obtain insights from the 
perspectives of end-users and experts. Specifcally, we carried out 
a large-scale survey including over 500 end-users with diferent 
levels of knowledge of AI to collect user preferences about the 
timing (related to When), content (related to What), and modality 
(related to How) of explanations in multiple AR scenarios. In addi-
tion, we ran three workshops with twelve experts (i.e., four experts 

per workshop) from diferent backgrounds, including algorithm 
developers, designers, UX professionals, and HCI researchers to 
iterate on the dimensions and generate guidelines to answer the 
When/What/How questions. 

Merging the insights obtained from these two studies, we devel-
oped the XAIR (eXplainable AI for Augmented Reality) framework 
(Fig. 1). The framework can serve as a comprehensive reference that 
connects multiple disciplines across XAI and HCI. It also provides a 
set of guidelines to assist in the development of XAI designs in AR. 
XAI researchers and designers can use the guidelines to enhance 
their design intuition and propose more efective and rigorous XAI 
designs for AR scenarios. 

We further conducted two user studies to evaluate XAIR. To 
verify its utility to support designers, the frst study focused on 
designers’ perspectives. Ten designers were invited to use XAIR and 
design XAI experiences for two real-life AR scenarios. To demon-
strate its efectiveness in guiding the design of an actual AR system, 
a second study was conducted from the perspective of end-users. 
We implemented a real-time intelligent AR system based on the 
designers’ proposals in the previous study using XAIR. The study 
measured the usability of the AR system with 12 end-users. The 
results indicated that XAIR could provide meaningful and insightful 
support for designers to propose efective designs for XAI in AR, 
and that XAIR could lead to an easy-to-use AR system that was 
transparent and trustworthy. 

The contributions of this research are: 

• We summarized literature from multiple domains and identifed 
the important dimensions for the when/what/how questions in 
the problem space when designing XAI in AR. 

• Drawing the results from a large-scale survey with over 500 users 
and an iterative workshop study with 12 experts, we developed 
XAIR, the frst framework for XAI design in AR scenarios. We 
also proposed a set of guidelines to support designers in their 
design thinking process. 

• The results of design workshops with 10 designers indicated that 
XAIR could provide meaningful and insightful creativity support 
for designers. The study with 12 end-users who used a real-time 
AR system showed that XAIR led to the design of AR systems 
that were transparent and trustworthy. 
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2 BACKGROUND 
In this section, we frst introduce more background about XAI 
(Sec. 2.1). We then summarize existing XAI design frameworks and 
demonstrate the need for a new XAI framework that is specifcally 
applicable to AR scenarios (Sec. 2.2). 

2.1 What is XAI? 
The notion of XAI can be traced back more than four decades [223], 
where expert systems would explain output via a set of decision 
rules [195, 207]. This concept has been brought back into focus by 
the success of black-box AI/ML models [59]. The working defnition 
of XAI used in this paper is: “given an audience, an explainable AI is 
one that produces details or reasons to make its functioning clear or 
easy to understand” [25]. 

With the increasing prevalence of advanced black-box models 
that make more critical predictions and decisions, the interpretabil-
ity and transparency of AI systems has attracted increasing atten-
tion from various academic, industrial, and regulatory stakehold-
ers [1, 90, 94, 169]. Addressing the broad vision of making AI more 
understandable for humans involves multidisciplinary research ef-
forts. ML researchers have developed algorithms that results in 
transparent models (e.g., decision trees, Bayesian models [47, 125]) 
or used post-hoc explanation techniques (e.g., feature importance, 
visual explanation, [146, 196, 199]) to generate explanations for 
users. HCI researchers, on the other hand, have focused on improv-
ing user trust [98, 170] and understanding [132, 134] of machine 
generated explanations. Psychology researchers have approached 
XAI from a more fundamental perspective and studied how people 
generate, communicate, and understand explanations [209, 234]. 

By providing more transparency and interpretability, XAI can 
ofer diferent target audiences diferent benefts. For instance, for 
algorithm developers and data scientists, XAI can provide more 
details for model debugging and improvement [137] and increase 
production efciency and robustness [188, 237]. For domain experts, 
XAI can reveal insights about causality [143], transferability [49, 
210], confdence [27, 168], and also enhance the reliability of model 
output [70, 178, 225, 226]. Early XAI research only focused on these 
two groups of users. Recently, there have been an increasing number 
of XAI studies that have focused on non-expert end-users who 
represent a large potential audience of XAI [74, 102]. XAI has been 
found to improve reliance and build trust with non-experts [170], 
especially when users encounter unexpected AI outcomes [67], have 
privacy concerns [72], or seek additional information [42, 69]. Some 
companies have integrated XAI into products used by the general 
population [135, 242], e.g., visualizing the match rate of restaurant 
suggestions in a map application [135] or showing reasons for 
product recommendations on a shopping website [242]. However, 
these eforts are still at an early stage. 

2.2 Why do we need XAI in Everyday AR? 
Since the frst AR HMD was built in 1968 [206], researchers and 
engineers have been striving to integrate AR HMDs into every-
day living. Recent examples include simple head-mounted cameras 
and displays (e.g., Google Glass Enterprise [5] and Snap Specta-
cles [10]), as well as more advanced HMDs with 3D-depth sensing 

(e.g., Microsoft Hololens [8] and Magic Leap [3]). As hardware im-
proves, it is foreseeable that AR will become an integral aspect of 
everyday living for general consumers and support a wide range of 
applications in the near future [58, 177]. 

2.2.1 The Importance of AI and XAI in AR. The role of AI will be 
critical for AR devices if they are to provide intelligent services. 
The integration of sensors enables AR systems to understand users’ 
current states [99, 194, 204] and their environment [139, 153] to 
provide a variety of intelligent functionalities. For example, AR 
could infer user intent [14] and provide contextual recommenda-
tions for daily activities (e.g., recipe recommendations when a user 
opens the fridge during lunch) [15, 118, 122]. The rich interaction 
between the outcomes of AI and end-users requires efectively de-
signed XAI that can support users in a variety of contexts, such 
as when users are confused or surprised while encountering an 
unexpected AI outcome, or when they want to make sure that an 
AI outcome is reliable and trustworthy [17, 155]. Recent work has 
started to explore the application of XAI in AR [16]. For instance, 
Wintersberger et al. found that showing trafc-related informa-
tion in AR while driving can provide much needed explanation to 
users and improve user trust [220]. Danry et al. explored the use of 
an explainable AI assistant integrated within wearable glasses to 
enhance human rationality [63]. Zimmermann et al. found that in-
troducing XAI during an AR-based shopping process could improve 
user experiences [247]. However, these studies proposed their own 
case-by-case XAI designs. In this research, we aggregated the major 
factors identifed in the literature and studied the when/what/how 
questions systematically. 

2.2.2 The Need for A New XAI Framework for AR. Researchers have 
proposed several XAI design spaces and frameworks for AI systems, 
e.g., knowledge-based systems [88], decision support systems [18], 
and recommendation systems [96]. For instance, Wang et al. pro-
posed a conceptual framework for building user-centric XAI sys-
tems and put it into practice by implementing an explainable clinical 
diagnostic tool [217]. Eiband et al. presented a stage-based par-
ticipatory design process for designers to integrate transparency 
into systems [75]. They evaluated the process using a commercial 
AI ftness coach. Zhu et al. proposed a co-creation design space 
between game designers using ML techniques and investigated 
the usability of XAI algorithms to support game designers [246]. 
Liao et al. developed an algorithm-informed XAI question bank to 
support design practices for AI systems [130]. Ehsan et al. investi-
gated how social transparency in AI systems supported sellers from 
technology companies and developed a conceptual framework to 
address what, who, why, when questions [73]. Wolf proposed the 
concept of scenario-based XAI design and highlighted researchers’ 
need to understand AI systems in specifc scenarios such as when 
researchers are not uncertain or they want to explain data limita-
tions [221]. These existing frameworks aim to guide XAI design for 
developers or domain experts for specifc applications. Focusing 
on non-expert end-users, Lim and Dey systematically investigated 
end-users’ opinions and preferences about diferent types of expla-
nations in multiple context-aware applications, and provided an 
XAI framework for intelligible context-aware systems [132]. More-
over, recent industry practitioners have also made eforts towards 
a designing framework for end-user-facing explanations [114]. 
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Figure 2: The Uniqueness of AR that Distinguishes XAI De-
sign from Other Platforms. 

Such XAI frameworks focused on the content design of XAI, 
which is mostly visualized on laptops or mobile phones, thus mak-
ing them insufcient for the myriad of AR contexts. There are 
several factors that distinguish AR from other platforms and neces-
sitate the need for a new XAI design framework (see Fig. 2). First, 
AR has a much deeper real-time understanding of a user’s current 
state via the sensors within an HMD [35, 186]. Second, compared 
to other platforms, AR systems can develop a more fne-grained 
understanding of a user’s context [62, 89, 139]. This richer infor-
mation not only provides new types of information that can be 
integrated into AR-based XAI explanations, but also infuences the 
design of XAI as explanations need to be tailored to a user’s state 
and context. Third, from an interface perspective, the ability to be 
always-on and 3D-aware enables AR to present information at any 
time [23, 144, 245], and spatially adapt explanations to the physical 
world [81, 176]. These factors infuence the design of XAI in AR, 
as they need to be presented to users in an appropriate, efcient, 
and efective way. Overall, these unique factors demonstrate how 
current frameworks are insufcient and there is a need for a new 
XAI framework specifcally designed for AR scenarios. 

3 XAIR PROBLEM SPACE AND KEY FACTORS 
Determining the way to create efective XAI experiences in AI 
is a complex challenge. Thus, it is important to frst identify the 
problem space to bound the scope of our investigation. We frst 
summarize over 100 papers from the ML and HCI literature to 
identify the problem space and the main dimensions within each 
problem (Sec. 3.1). Then, we outline the key factors that determine 
the answers to the problems (Sec. 3.2). 

The problem space and key factors defne the structure of XAIR 
(Fig. 1 middle). In Sec. 4, we present two studies conducted to 
obtain insights from end-users and expert stakeholders about how 
to design XAI in AR. Then, combining the structure and insights, 
we show how these factors are connected with the problem space, 
and provide design guidelines in Sec. 5. 

3.1 Problem Space 
Following the design space analysis method [149], the research 
question was divided into three sub-questions: when to explain, 
what to explain, and how to explain [76, 159]. 

3.1.1 When to Explain? The literature review revealed two aspects 
of “when” that were important to consider: the availability of ex-
planations (i.e., whether to prepare explanations?), and the timing 
of the explanation’s delivery (i.e., when to show explanations?). 

Availability. Previous research has found that to maintain a 
positive user experience, supporting user agency and control is 
important during human-AI interaction [46, 121]. Having explana-
tions that are available and accessible is in line with the goal of 
supporting user agency. 

Delivery. With the ability to show information at any time, 
AR can employ various timing strategies to present explanations. 
Thus, it is important to fnd the appropriate method to deliver 
explanations to users. Generally, there are two approaches, manual-
trigger (i.e., initiated by users) and auto-trigger (i.e., initiated by 
the system) [57, 235]. On the one hand, researchers have found 
that explanations should not always be presented to users, because 
they can introduce unnecessary cognitive load and become over-
whelming for non-expert end-users [41, 51, 183, 205, 215]. This is 
especially important in AR, as users’ cognitive capacity tends to 
be limited [40]. Moreover, adopting manual triggers would enable 
users to choose to see explanations as needed, thus enabling them 
to exercise agency over their experience [145, 184]. On the other 
hand, existing fndings on just-in-time intelligent systems (e.g., 
just-in-time recommendations [105, 148] and just-in-time interven-
tions [159, 189, 232]) have suggested that automatically delivering 
explanations at the right time based on user intent and need (as 
detected via AR sensing that identifes a user’s state and context) 
can provide a better user experience [32, 152]. 

3.1.2 What to Explain? The literature review also found two im-
portant aspects of “what” to consider: First, the content of the ex-
planations (i.e., what type of content to include?). Second, the level 
of detail of the explanations (i.e., how much detail should be ex-
plained?). 

Content. Previous literature in XAI has identifed several expla-
nation content types [25, 155]. The seven types are: 

(1) Input/Output. This type explains the details of input (e.g., data 
sources, coverage, capabilities) or output (e.g., additional details, 
options that the system could produce) of a model [132, 133]. 

(2) Why/Why-Not. This type explains the features in the input 
data [178] or the model logic [180] that have led or not led to 
a given AI outcome [158] (also known as contrastive explana-
tions). Showing feature importance is another commonly used 
technique to generate these explanations [48, 190]. 

(3) How. This type provides a holistic view to explain the overall 
logic of an algorithm or a model and illustrate how the AI model 
works. Typical techniques include model graphs [116], decision 
boundaries [141], or natural language explanations [29]. 

(4) Certainty. This type describes the confdence level of the model 
with its input (e.g., for models whose input is not deterministic, 
explain how accurate the input of the model is) or output (e.g., 
explain how accurate, or reliable the AI outcomes are) [135, 193]. 
Scores based on softmax [38] or calibration [167] are commonly 
used as the confdence/certainty score for ML models. 

(5) Example. This type presents similar input-output pairs from a 
model, e.g., similar input that lead to the same output or similar 
output examples given the same input [45, 107]. This is also 
known as the What-Else explanation. Example methods include 
infuence functions [112] and Bayesian case modelling [110]. 
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(6) What-If. This type demonstrates how changing input or apply-
ing new input can afect model output [44, 134]. 

(7) How-To. In contrast to What-If, this type explains how to 
change input to achieve a target output [130, 217], e.g., how 
to change the output from X to Y? Common methods for What-
If/How-To content include rule generation [92], feature descrip-
tion [214], and input perturbation [241]. 
Moreover, another aspect that is independent of the explanation 

content type is global vs. local explanations (explaining the general 
decision-making process vs. a single instance) [156]. In general, non-
expert end-users were found to prefer local explanations [67, 117]. 

Detail. Displaying every relevant explanation content type to 
an end-user can be overwhelming, especially with the limited cog-
nitive capacity they have in AR [26, 40]. Explanations that extend 
a user’s prior knowledge or fulfll their immediate needs should be 
prioritized [60]. Moreover, previous research has suggested that pre-
senting detailed and personalized explanations is useful for better 
understanding AI outcomes [78, 101, 113, 192, 228]. 

Our focus on content and detail is about choosing appropriate 
explanation content types and proper levels of detail, but not on 
picking which techniques to generate explanations. From a techni-
cal perspective, there are interpretable models (i.e., the model being 
transparent, such as linear regression or decision trees) and ad-
hoc explainers (i.e., generating explanations for complex, black-box 
models) [146, 178]. The latter can further be divided into model-
specifc and model-agnostic explanation methods [25]. We refer 
readers to other surveys and toolkits for developing or selecting 
explanation generation algorithms [7, 9, 13, 22, 131]. 

3.1.3 How to Explain? The last sub-question how focuses on the 
visual representation of the content in AR. Two dimensions emerged 
from the literature review, i.e., modality and paradigm. 

Modality. The multi-modal nature of AR enables it to support 
AI outcomes via various modalities (e.g., visual, audio, or hap-
tic) [53, 161]. Explanations are hard to convey using modalities 
with limited bandwidth (e.g., haptic, olfactory, or even gustatory). 
Therefore, visual and audio are the two major modalities that should 
be employed for explanations. 

Paradigm. If explanations are presented using audio, the design 
space is relatively limited (e.g., volume, speed). We refer readers to 
existing literature on audio design (e.g., [83, 109]). The design space 
of the visual paradigm for explanations, however, is much larger. 
First, from a formatting perspective, explanation content can be 
presented in a textual format (e.g., narrative, dialogue) [116, 158], 
graphical format (e.g., icons, images, heatmaps) [200, 240], or a 
combination of both. Second, from a pattern perspective, an expla-
nation can be displayed either in an implicit way (i.e., embedded 
in the environment, such as a boundary highlight of an object) or 
explicit way (i.e., distinguished from the environment, such as a pop-
up dialogue window) [68, 136, 208]. The pattern is closely related 
to the adaptiveness of the AR interface [61, 217]. With 3D sens-
ing capabilities, the location of an explanation can be body-based 
(mostly explicit), object-based (implicit or explicit), or world-based 
(implicit or explicit) [35, 120, 145, 227]. Prior AR research has ex-
plored adaptive interface locations [147, 157], e.g., interfaces should 
be adaptive based on the semantic understanding of the ongoing 
interaction [54, 171, 185] and ergonomic metrics [79]. 

3.2 Key Factors 
These three questions, and their dimensions, form the overall prob-
lem space of XAIR. Another important aspect of XAIR is the fac-
tors that determine the answers to these questions. We summarize 
these factors from two perspectives, one specifc to AR platforms 
(Sec. 3.2.1), and the other agnostic to any platform (Sec. 3.2.2). 

3.2.1 AR-Specific Factors. Fig. 2 summarizes the three main fea-
tures that distinguish AR from other platforms: User State, Contex-
tual Information, and Interface. As Interface is an integral property 
of an AR platform, it remains invariant to external changes. In 
contrast, the other two aspects are dynamic and would alter the 
design of XAI in AR. 

User State. The sensors that could be integrated within future 
HMDs would empower an AR system to have a rich, instant un-
derstanding of user’s state, such as activities (IMU [86, 219], cam-
era [80, 128, 194, 201], microphone [103, 218, 229, 230]), cognitive 
load (eye tracking [71, 104, 238], EEG [20, 224]), attention (eye 
tracking [56, 99, 204, 231], IMU [123], EEG [213]), emotion (facial 
tracking [233, 236], EEG [202, 216]) and potential intent (the fu-
sion of multiple sensors and low-level intelligence [14, 111, 211]). 
Depending on a user’s state, the design of explanations could be 
diferent. For example, as identifed in previous research on ambient 
interfaces [82, 164], when users engage in activities with a high 
cognitive load, explanations should not show up automatically to 
interrupt them (related to when). 

Contextual Information. Compared to devices such as smart-
phones, AR HMDs have more context awareness. Other than having 
an awareness of location and time [66], an egocentric camera and 
LiDAR, combined with other sensors (e.g., Bluetooth, WiFi, RFID), 
can identify details about digital and non-digital objects in the en-
vironment [139, 163, 175], and have a better understanding of the 
semantics of a scene [34, 89, 153, 162]. Such contextual information 
would also infuence the design of XAI. For instance, an explana-
tion visualization about recipe recommendations that appears when 
users open the fridge may look diferently from explanations about 
podcast suggestions that are shown while driving (related to how). 

3.2.2 Platform-Agnostic Factors. There are also other factors that 
are platform agnostic such as the motivation to present explana-
tions (i.e., why explain?). We view this factor from two perspectives, 
one from the system side (i.e., what are the system’s goals when pre-
senting explanations?), and the other from the non-expert end-user 
side (i.e., what are users’ goals when they want to see explana-
tions?) [187]. The user profle (i.e., individual details) is another 
important factor related to personalized explanations [113, 192]. 

System Goal. Based on prior literature, we summarize four sys-
tem goals that are desired when an AR system provides explanations 
for AI outcomes: 
(1) User Intent Discovery. When an AI model generates suggestions 

for a new topic, the system seeks to help users discover new 
intent [87, 170, 187]. For example, when a user is traveling in 
a city, the system recommends several attractions and local 
restaurants to visit. Both the recommendation and explanations 
help the user explore new things that they were not aware of. 

(2) User Intent Assistance. When the target task has been already 
initiated by users, then the goal of generating AI outcomes and 
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explanations assists users with existing intent [28, 39, 64]. For 
instance, when a user is making dinner, intelligent instructions 
and explanations would suggest alternative ingredients based 
on what a user has in their space. 

(3) Error Management. When a system has low confdence about 
input/output or makes a mistake, explanations can serve as 
error management and explain the process so that users can 
understand where an error comes from if it appears [13, 223], 
how they might better collaborate with the system [64], or when 
to adjust their expectation of the system’s intelligence [30, 243]. 

(4) Trust Building. Various studies have found that explanations 
can help systems build user trust by ofering transparency and 
increasing intelligibility [19, 150, 198]. As a result, users’ trust 
in models leads them to rely on the system [29, 43]. 

These four types of system goals are not exclusive. A system can 
seek to achieve multiple goals simultaneously. Depending on the 
subset of system goals, the appropriate explanation timing and 
content types can difer [132, 158] (related to when and what). 

User Goal. While a system has varying reasons to provide expla-
nations, end-users also have varying reasons to have explanations. 
We summarize four types of user goals from literature. 

(1) Resolving Confusion/Surprise. Expectation mismatch is one of 
the main reasons to need explanations [37, 67, 119, 181]. Users 
can become confused or surprised when AI outcomes are dif-
ferent from what users are expecting, and having explanations 
can help to resolve concerns [85, 174]. 

(2) Privacy Awareness. As AI infuences more aspects of daily liv-
ing, concerns about invasion of one’s privacy are also grow-
ing [151]. Explanations could disclose which data is being used 
in a model’s decision-making process to end-users [65, 77, 172]. 
Researchers and designers are recommended to follow an exist-
ing privacy framework, such as contextual integrity [160], to 
make privacy explanations more robust. 

(3) Reliability. Ensuring the reliability of AI outcomes is essential 
for non-trivial decision-making processes so that users can rely 
on a trustworthy system [102, 124, 178], e.g., daily activity rec-
ommendations for personal health management or automatic 
emergency service contacting in safety-threatening incidents. 

(4) Informativeness. End-users can be curious about the reason or 
process behind an AI outcome [97, 126]. Explanations can fulfll 
users’ curiosity by providing more information [33, 115, 172]. 

Similar to the system goals, these user goals are not exclusive and 
users can have multiple goals at the same time. Diferent goals can 
require diferent explanation timings and content (when and what). 

User Profle. This factor covers a range of individual details 
that infuence the design of XAI. For example, information such as 
demographics and user preferences is necessary to generate per-
sonalized explanations [84, 113, 192]. End-users’ familiarity with 
system outcomes is related to the need for explanations and when 
to provide them [60]. Users’ digital literacy with AI also afects 
what types of explanations are appropriate and would serve users’ 
purposes [74, 114, 142]. Moreover, users may have individual pref-
erences about explanation visualizations, which may be closely 
related to how. This factor takes these considerations into account. 

It is worth noting that XAIR is proposed as a design framework. 
In a context that AR can detect robustly, designers can use the 
framework to infer end-users’ latent factors, such as User State and 
User Goal, based on their design expertise [75]. For example, when 
users are driving (which can be easily detected by AR), designers 
can assess users’ cognitive load to be high (User State). For more 
complex factors such as User Goal, designers can propose a set of 
potential goals in a given scenario and then refer to the framework 
to propose a set of designs. As sensing and AI technology are 
maturing, the framework could be coupled with the automatic 
inference of these factors [14, 86, 111, 211, 233]. 

4 METHODS 
We conducted two studies after outlining the problem space, one 
from end-users’ perspectives (Sec. 4.1), and the other from XAI/de-
sign/AR expert stakeholders’ perspectives (Sec. 4.2). The fndings 
from the studies are complementary and provided insights that 
guided the development of the framework. 

4.1 Study 1: Large-Scale End-User Survey 
In spite of the existing studies on XAI for end-users, it is unclear 
whether these fndings hold for AR scenarios due to the unique 
features of AR systems. Thus, we conducted a large-scale survey 
with end-users to collect their preferences on various aspects of 
XAI experiences for everyday AR. 

4.1.1 Participants. We recruited 506 participants from a third-party 
online user study platform (age 18 - 54, average 37±10), with a 
balanced gender distribution (Female 260, Male 241, Non-binary 
5). Participants’ digital literacy with AI varied, thus they were split 
into six groups: 1) unfamiliar with AI (12.2%, 62), 2) heard of AI 
but never used AI-based products (23.5%, 119), 3) used AI products 
occasionally a few times (23.1%, 117), 4) used AI products on a 
regular basis (12.8%, 65), 5) used AI products frequently (20.0%, 101), 
and 6) worked on AI products (8.3%, 42). Participants were familiar 
with the concept of AR. Among these groups, we further randomly 
sampled 20 participants (age 18 - 53, average 37±9, 11 Female, 9 
Male) for a semi-structured interview to collect a more in-depth 
understanding about their preferences for XAI in AR. 

4.1.2 Design and Procedure. We prepared fve sets of proof-of-
concept descriptions and images with intelligent everyday AR ser-
vices that represented fve scenes in a typical weekday (i.e., one 
set per scene). They included 1) music recommendations for the 
morning when users would be brushing their teeth, 2) podcast rec-
ommendations for when users would be driving to work, 3) music 
recommendations for when users would be working out, 4) recipe 
recommendations for when users would be making dinner, and 5) 
additional spice recommendations for when users would be mak-
ing dinner. In this study, we chose recommendations as the main 
AI service category, since it is arguably one of the most common 
AI applications in everyday AR [50, 118] and users could easily 
contextualize these scenes in their mind. 

For the AI outcome in each scene, participants were asked whether 
they wanted explanations (i.e., yes, no, neutral). If their answer was 
yes, they would be directed to answer when they wanted it (i.e., al-
ways/frequent, contextually dependent, rare/never), their preferred 
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length of explanation (i.e., concise vs. detailed) and the presenting 
modality (e.g., visual, audio, neutral). After viewing these scenes, 
they were asked to choose the explanation content types that they 
found useful. Participants were compensated $5 USD for the task. 

We randomly sampled 20 respondents who were willing to par-
ticipate in a one-hour interview about the detailed reasons behind 
their survey responses. These participants were compensated $10 
for the interview. The interviews were video-recorded and man-
ually transcribed. Two researchers collectively summarized and 
coded the data using a thematic analysis [36]. Specifcally, they frst 
met to establish an agreement on the themes and independently 
coded all the data. Then, they gathered to discuss and refne the 
coded data to resolve diferences. Their inter-rater reliability (�) 
was over 90% after the refnement. 

4.1.3 Results. The survey found that respondents had specifc pref-
erences for the timing, content, and modality of explanations. 

Finding 1: Most users wanted explanations of AI outputs 
in AR. (related to when - availability). A large proportion of re-
spondents wanted explanations (89.7%), motivating the need for 
XAI in everyday AR scenarios (see Fig. 3a). Our fndings were con-
sistent with previous work on end-users’ needs for XAI outside 
AR [74, 114]. The results indicated that if respondents had at least 
heard of AI, they were more likely to express a need for XAI in AR 
compared to those who were not familiar with AI. Our interviews 
found that respondents with little knowledge of AI didn’t realize 
what explanations could be used for. Interestingly, around 10% of 
respondents who worked on AI indicated that they didn’t want 
explanations. Our interviews revealed the main reason being that 
some users were “familiar enough... with the algorithm” (P2). 

Finding 2: The majority of users wanted explanations 
to be occasional and contextual, especially when they saw 
anomalies (related to when - delivery). Although most respondents 
wanted explanations, only 13.8% indicated that they needed expla-
nations all the time. The majority of respondents (63.4%) preferred 
for explanations to be presented contextually only when they have 
the need. The results of the interviews indicated that the need for 
explanations was mainly in cases where AI outcomes were new or 
anomalous to respondents. This fnding is also in line with previous 
studies’ fndings outside AR [67, 102]. 

Finding 3: Users generally preferred specifc types of expla-
nations (related to what - content). Four explanation content types 
stood out as useful: Input/Output (41.5%), How (37.1%), Why/Why-
Not (31.6%), and Certainty (30.6%). The frst three types were high-
lighted in previous fndings about context-aware systems [132, 133], 
while the last type has been adopted by industrial practitioners [135, 
203]. As shown in Fig. 3c, respondents with more knowledge of AI 
would prefer having these explanation types more than those with 
less AI knowledge. 

Finding 4: Users found detailed and personalized expla-
nations useful (related to what - detail). Although showing more 
explanation content can introduce additional cognitive costs, 48.3% 
of respondents reported that they would fnd detailed explanations 
with multiple content types to be useful. Moreover, respondents in-
dicated that explanations that included personal preferences would 
be more convincing, e.g.,“more personable, more upbeat” (P13). These 
results suggest that there is a need to provide options to modulate 
the level of explanation detail (see Sec. 3.1.2) and the User Profle 
factor in the framework). 

Finding 5: Users’ preferences for modalities depended on 
the cognitive load in an AR scenario (related to how - modal-
ity). The fve scenes introduced diferent levels of cognitive load, 
which led respondents’ preferences for XAI modality to vary. We 
found that for scenes with complex visual stimuli such as driving, 
respondents tended to prefer audio explanations over visual ones 
by 40%, as they were “more easy and convenient” (P8). This suggests 
that it is necessary to take modality bandwidths into account when 
choosing how to present XAI in diferent AR scenarios [40]. 

Overall, these fndings motivated the need for XAI in AR (Finding 
1). Moreover, these results (Finding 2-5) also provided guidance 
for design XAI for end-users in AR. 

4.2 Study 2: Iteration with Expert Workshops 
Based on the existing literature and the end-user survey results, 
we created an early draft of the framework. Since XAIR aims to 
support designers and researchers during their design process, we 
utilized our draft within three workshops with expert stakeholders 
to collect their insights and fnalize the framework. 

(a) Need Explanations? (b) When to Have Explanations? (c) What Explanations Are Preferred? 

Figure 3: Highlight of Survey Results with 506 End-Users about Their Needs and Preferences of XAI in everyday AR scenarios. 
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4.2.1 Participants. Twelve participants (7 Female, 5 Male, Age 35 
± 6) from a technology company volunteered to participate in the 
study. They came from four backgrounds, i.e., 3 XAI algorithm devel-
opers, 3 designers, 3 UX professionals, and 3 HCI/AR researchers. 
Participants worked in their domains for at least fve years. All 
participants were familiar with the concept of AI and AR. Partici-
pants were randomly assigned into three groups, with each group 
containing one expert from each domain. 

4.2.2 Design and Procedure. We proposed a draft of the framework 
combining the summary of literature and the results of end-user 
study. It was an early version of XAIR that is introduced in Sec. 5 and 
can be found in Appendix A. We also prepared a set of everyday AR 
scenarios similar to the ones used in the end-user survey (Sec 4.1) to 
provide more context and stimulate more insights from experts. We 
utilized a Figma board to show images of the framework and experts 
could add in-place feedback to diferent areas of the framework. 

We adopted an iterative process using three sequential work-
shops. All workshops lasted about 90 minutes and were video-
recorded. After each workshop, two researchers went through a 
similar coding and refning process as Sec. 4.1.2, to make sure the 
result achieved a inter-rater reliability (�) over 90%. We summarized 
experts’ feedback, iterated on the framework, and presented the 
new version in the next workshop. 

4.2.3 Results. Overall, experts found the framework to be “useful” 
(P2, P6, P7) and that it would “serve as a very good reference for de-
sign” (P11). Our framework converged as the workshops proceeded, 
with us receiving rich feedback during the frst workshop, and par-
ticipants in the last workshop only ofering small suggestions. We 
briefy highlight the major comments that were made. 

Suggestion 1: Add Missing Pieces. Participants found a few 
factors missing in the early version of the framework. For exam-
ple, they pointed out that User Goal and User Profle needed to be 
considered for the what part, and that the modality of AI output in 
AR needed to be taken into account for the how part. They also 
provided suggestions on appropriate explanation content types 
with diferent system/user goals (what - content). 

Suggestion 2: Remove Redundancy. Participants also found 
some parts unnecessarily complex. For example, four experts sug-
gested removing the interface location from how part (i.e., where 
to explain, mentioned in Sec. 3.1.3), because the location needed to 
be optimized with the whole interface including AI outcomes. 

Suggestion 3: Add Default Options. Participants provided 
advice for default options of diferent dimensions. For instance, 
they recommended using the manual-trigger as the default delivery 
method (when) due to users’ limited cognitive capacity in AR. 

Suggestion 4: Connect across Sub-questions. Participants 
came to the consensus that the three sub-questions were interwo-
ven. For example, the choice of what to explain would infuence 
the design of how to explain, and the framework should capture 
and emphasize such connection. 

Suggestion 5: Improve Visual Structure. Finally, participants 
also ofered several suggestions about the visual simplifcation, 
clarifcation, and color choices. The fgures in Appendix A show 
the evolution of the visual structure. 

The results of the end-user study and expert workshops are 
complementary and guided the fnal version of the framework. 

5 XAIR FRAMEWORK 
We introduced the structure of XAIR framework in Sec. 3 (i.e., 
problem space and key factors), and summarized insights from end-
users and experts in Sec. 4. Connecting the literature survey and 
studies’ results (Findings 1-5 in Sec. 4.1.3, and Suggestions 1-5 
in Sec. 4.2.3), we introduce the details of XAIR, identify how the 
key factors determine the design choices for each dimension in the 
when/what/how questions, and present a set of guidelines. 

5.1 When to Explain? 
We frst introduce the when part and discuss how to make a choice 
for delivery options. Fig. 4 presents an overview. 

5.1.1 ○A Availability. The end-user survey results suggested the 
need for explanations in AR for the majority end-users (Finding 1). 
A system should always generate explanations with AI outcomes 
and make them accessible for users, so that they can have a better 
sense of agency whenever they need explanations [121, 138, 239]. 

G1. Make explanations always accessible to provide user agency. 

5.1.2 ○B Delivery. Aligned with previous work [40, 100, 165], ex-
perts also mentioned the risk of cognitive overload in AR (Suggestion 
3). The default option should be to wait until users manually request 
explanations. An example could be a button with an information 
icon that enables users to click on it to see an explanation. 

However, there are cases where automatically presenting just-in-
time explanations is benefcial [32, 152]. We summarize the three 
cases based on our two studies (Finding 2 about the importance 
of contextual explanations, and Suggestion 1 about the need of 
considering User Goal and User Profle): 

1) Cases when users have an expectation mismatch and become 
surprised/confused about AI outcomes [37, 67], i.e., User Goal as 
Resolving Surprise/Confusion (also refected by User State, which 
could be detected by AR HMDs using facial expressions and gaze 
patterns [21, 212]). An example could be an intelligent reminder to 
bring umbrella when users are leaving home on a sunny morning 
(but it will rain in the afternoon). Automatic explanations of the 
weather forecast could help resolve users’ confusion. 

2) Cases when users are unfamiliar with new AI outcomes (in-
dicated via history information of User Profle), e.g., users receive 
a recommendation of a song that they have never heard before. 
Just-in-time explanations of the reason can help users to better 
understand the recommendation. 

3) Cases when the model’s input or output confdence is low and 
the model may make mistakes [30, 108], i.e., System Goal as Error 
Management. For instance, a system turning on a do-not-disturb 
mode when it detects a user working on a laptop in an ofce when 
the AR-based activity recognition confdence was low (e.g., 80%). 
Explanations could be a gatekeeper if the detection was wrong 
and users could calibrate their expectations or adjust the system to 
improve the detection [64, 243]. 

All of these cases have the prerequisite that users have enough 
capacity to consume explanations [166, 191], e.g., users’ cognitive 
load is not high (could be detected via gaze or EEG on wearable AR 
devices [224, 238]), and users have enough time to do so (inferred 
based on context). 
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Figure 4: The "When" Part of XAIR. It contains two major dimensions: (A) Availability and (B) Delivery, highlighted in bolded 
texts. The design choice of dimensions are in italic texts (same below for Fig. 5 and Fig. 6). For example, Delivery can be either 
User-trigger or Auto-trigger. Each dimension has factors that should be considered for explanation designs. The guidelines G1 
and G2 provide advice on these design choices. 

G2. By default, don’t trigger explanations automatically, wait 
until users’ request. Only trigger explanations automatically 
when both conditions are met: 
(1) Users have enough capacity (e.g., cognitive load, urgency); 
(2) Users are surprised/confused, or unfamiliar with the out-
come, or the model is uncertain. 

5.2 What to Explain? 
In Sec. 3.1.2, we identifed that content and detail were two dimen-
sions of the what part of the framework. We introduce how to 
choose among all explanation content types in Fig. 5. 

5.2.1 ○A Content. In AR systems, the AI outcomes are based 
on factors such as User State (e.g., user activity), Contextual Infor-
mation (e.g., the current environment), and User Profle (e.g., user 
preference). These factors also determine the content of diferent 
explanation content types. To choose the right types, the frame-
work lists three factors to consider and provides recommendations 
of personalized explanation content types based on the literature 
(shown as solid check marks in the top table in Fig. 5), end-user 
survey, or expert advice (based on Finding 3 and Suggestion 1, 
shown as hollow check marks). 

1) System Goal. Diferent system goals need diferent explana-
tions. For example, when a system recommends that users check 
out a new clothing store (User Intent Discovery), presenting Exam-
ples of similar stores that users are interested in and Why this store 
is attractive to users can be helpful. When a system wants to cali-
brate users’ expectations about uncertain recipe recommendations 
(Error Management), showing Examples is less meaningful than 
presenting How and Why the system recommended this recipe, 

and How To change output if users want to. We leverage some 
literature on contextualized explanation content types to support 
our recommendations in the framework [64, 132, 133]. 

2) User Goal. Similarly, diferent user goals also require difer-
ent explanations. For instance, Certainty explanations are helpful 
when users want to make sure an exercise recommendation fts 
their health plan (Reliability), while such explanations would be 
not useful when users want to be more aware of which data an 
AR system uses (Privacy Awareness). Most of these recommenda-
tions are supported by previous studies [25, 119, 132, 155, 174, 217]. 
Regarding how to identify the user goals to choose explanations, 
designers can use their expertise to infer them in the context de-
termined by AR systems. In the future, it is also possible for AR 
systems to combine a range of sensor signals to detect/predict users’ 
goals [14, 111, 211]. 

3) User Profle, specifcally user literacy with AI. For the majority 
of end-users who are unfamiliar with the AI techniques, we recom-
mend only considering the four content types that users indicated 
that they would fnd useful: Input/Output, Why/Why-Not, How, 
and Certainty (as shown in Findings 3 and Fig. 3c). If users have 
high AI literacy, then all types could be considered [74, 114]. 

Elements in System/User Goal are not exclusive to each other. If 
there is more than one goal, these columns can be merged within 
each factor section to fnd the union (i.e., content types checked in 
at least one column). Then, one can fnd the intersection among the 
three factors’ content type sets (i.e., overlapping types in all sets) to 
ensure that these explanations can fulfll all factors simultaneously. 
We show complete examples in later sections (Sec. 6 and Sec. 7). 

G3. To determine personalized explanation content, consider 
three factors: system goal, user goal, and user profle. 
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Figure 5: The "What" Part of XAIR. (A) Content and (B) Detail are the two major dimensions. Combining the literature summary 
(shown as solid check marks) and fndings from Study 1 & 2 (shown as hollow check marks), G3-G5 provide guidelines on 
choosing appropriate explanation content types and length. 

5.2.2 ○B Detail. After selecting the appropriate content, default 
explanations need to be concise and can be further simplifed by 
highlighting the most important types [26, 40]. General end-users 
are primarily interested in Why, which is in line with experts’ 
advice (Suggestion 3 about default options) and previous liter-
ature [102, 132, 133]. Designers’ can leverage their expertise to 
determine whether other types should be omitted or combined 
with Why in a specifc context. 

G4. By default, display concise explanations with top types. 
Prioritize Why, and choose other types based on the context. 

As a large proportion of Study 1 participants indicated that de-
tailed explanations could be useful (Finding 4), AR systems need 
to provide an easy portal (an interface widget such as a button) 
for end-users to explore more details. This can also provide user 
agency [145]. 

G5. Always provide users opportunities for agency with the 
option to explore more detailed explanations upon request. 

5.3 How to Explain? 
Finally, we introduce the how part and elaborate from the modality 
and paradigm perspective (see Fig. 6). 

5.3.1 ○A Modality. Considering channel bandwidth, the visual 
and audio modalities are the two most feasible modalities for AR. 
Since explanations usually come during or after AI outcomes, to 
maintain consistency, the default modality of an explanation should 
be the same(Finding 5 and Suggestion 3). In cases when outcomes 
use a haptic modality (e.g., vibration as a reminder), audio channels 
could be used as necessary (although this should be rare), since the 
choice of the haptic channel already conveys the need to be subtle. 

However, there are also cases where one modality could be over-
loaded (based on User State and Contextual Information). For ex-
ample, when users are driving and a navigation app suggests an 
alternate detour route, although the AI outcome is visual, the ex-
planation should be audio to avoid visual overload. When users are 
in a loud environment, a vibration-based AI outcome needs to use 
the visual modality for explanations. These scenarios can be easily 
detected by AR HMDs. 

G6. By default, adopt the same explanation modality as 
that of the AI output (except for haptic→audio). When one 
modality’s load is high, use another modality. 

Note that the modality choice also applies to the manual-trigger 
case when explanations are not automatically delivered (G2), e.g., a 
button icon for visual modality, a voice trigger for audio modality. 
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Figure 6: The "How" Part of XAIR. (A) Modality and (B) Paradigm are the major dimensions. Note that Paradigm is only for the 
visual modality, and it is further broken down into two perspectives: format and pattern. G6-G8 provides guidelines on making 
the proper design choices. 

5.3.2 ○B Paradigm. Experts agreed that the audio design space 
does not belong within this framework. For visual design, after 
removing the location from our framework (Suggestion 2 of re-
dundancy removal), we mainly focused on two aspects: format and 
pattern. Depending on the content (G3), the explanation format 
can be textual [116, 158], graphical [200, 240], or both. Based on the 
consensus of experts in Study 2, text should be the primary format. 
Experts suggested several reasons for this. Text takes up less space 
in a limited AR interface, and can introduce relatively less cognitive 
load. Moreover, the textual format is more universal and can cover 
all types. Graphics can be used as the secondary format. For default 
explanations (G4), in addition to displaying a short and concise 
textual paragraph, simple graphics such as icons can be used to pro-
vide additional information. For detailed explanations (G5), more 
complex graphical formats (e.g., example images or heatmaps) can 
be used as long as they are easy for end-users to understand. 

G7. [Visual] Use text as the primary format. Only use graph-
ics if they are easy to understand. 

Independent of the format, explanations can be presented in 
an implicit or explicit pattern [136, 208]. Given the capability of 
depth sensing and 3D registration in AR, we recommend using 
the implicit pattern when the explanation content is compatible 
with the environment (i.e., can be naturally embedded as a part 
of the environment). For example, for book recommendations, a 
text cue or a small icon can foat on the book to indicate the book’s 
topic that users like (belonging to the Why explanation content 
type). When explanations and the environment are not compatible, 
using an explicit pattern (e.g., a dialogue window) can be the back-
up option. With regard to what explanation content is compatible 
with the environment, designers can leverage their expertise and 

intuition to propose appropriate embedding patterns for given a 
context. Future AR systems may frst understand the environment 
using object detection and context recognition algorithms, and 
then utilize techniques such as knowledge graphs (i.e., networks 
of real-world entities and their relationships) [52] to assess the 
compatibility between the content and the environment. 

G8. [Visual] Use implicit paterns if content can be embed-
ded in the environment. Otherwise, use explicit paterns. 

XAIR can not only serve as a summary of the study fndings and 
the multidisciplinary literature across XAI and HCI, but also guide 
efective XAI design in AR. In the next two sections, we provide 
examples of XAIR-supported applications (Sec. 6), and evaluate 
XAIR from both designers’ and end-users’ perspectives (Sec. 7). 

6 APPLICATIONS 
To demonstrate how to leverage XAIR for XAI design, we present 
two examples that showcase potential workfows that use XAIR 
for everyday AR applications (Fig. 7). More details can be found 
in Appendix B.1. After determining the key factors for a given 
scenario, we used the framework (Fig. 4-Fig. 6) to make design 
choices based on the factors. 

6.1 Scenario 1: Route Suggestion while Jogging 
Scene. Nancy (AI expert, high AI literacy) is jogging in the morning 
on a quiet trail. Since it is the cherry-blossom season and Nancy 
loves cherries, her AR glasses display a map beside her and recom-
mend a detour. Nancy is surprised since this route is diferent from 
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(a) Scenario 1: Route Suggestion when Jogging (b) Scenario 2: Plant Fertilization Reminder. 

Figure 7: Application of XAIR on Two Everyday AR Scenarios. In the second scenario, the hand icon indicates that explanations 
are manually triggered (the same below). Figures only present the default, concise explanations. Detailed explanations are 
described in the main text of Sec. 6. 

her regular one, but she is happy to explore it. She is also curious 
to know the reason this new route was recommended. 

When. Delivery. Nancy has enough cognitive capacity in this 
scenario. Her User Goal is Resolving Surprise. Therefore, an expla-
nation is automatically triggered because the two conditions are 
met (G2). 

What. Content. Other than the User Goal, the System Goal is 
User Intent Discovery (exploring a new route to see cherry blos-
som). Considering Nancy’s User Profle, she is an expert in AI, so 
the appropriate explanation content types (G3) are Input/Output 
(e.g., “This route is recommended based on seasons, your routine, 
and preferences.”) and Why/Why-Not (e.g., “The route has cherry 
blossom trees that you can enjoy. The length of the route is ap-
propriate and fts your morning schedule.”). Examples for all seven 
explanation content types can be found in Appendix B.1. 
Detail. The AR interface shows the Why as default (G4), and can be 
expanded to show both types in detail (G5). Nancy can slow down 
and click the “More” button to see more detailed explanations while 
standing or walking. 

How. Modality. The explanation is presented visually, the same 
as the recommendation (G6). 
Format. The default explanation uses text, while the detailed expla-
nation contains cherry-blossom pictures of the new route to help 
explain the Why (G7). 
Pattern. The explanation is shown explicitly within the route rec-
ommendation window (G8). 

6.2 Scenario 2: Plant Fertilization Reminder 
Scene. Sarah (general end-user, low AI literacy) was chatting with 
her neighbor about gardening. After she returned home and sat 
on the sofa, her AR glasses recommended instructions about plant 
fertilization by showing a care icon on the plant. Sarah is concerned 
about technology invading her privacy, and wants to know the 
reason behind the recommendation. 

When. Delivery. Although Sarah has enough cognitive capacity, 
none of the three cases in the second condition of G2 are met (i.e., 
she was familiar with the recommendation and not confused, and 

the model didn’t make a mistake). Therefore, the explanation needs 
to be manually triggered (G2). 

What. Content. In this case, the System Goal is Trust Building 
(clarifying the usage of data), and the User Goal is Privacy Aware-
ness. Sarah’s User Profle indicates that she is not an expert in AI. 
According to G3, the explanation content type list contains In-
put/Output, Why/Why-Not, and How. 
Detail. Considering Sarah’s concern, the default explanation merges 
Why and How: “The system scans the plant’s visual appearance. It 
has abnormal spots on the leaves, which indicate fungi or bacteria 
infection.” (G4). For the detailed explanation, the full content of the 
three types is presented in a drop-down list upon her request (G5). 

How. Modality. Following G6, the visual modality is used for 
both the explanation and the manual trigger (a button beside the 
plant care icon). 
Format. Other than using text as the primary format, the abnormal 
spots on the leaves are also highlighted via circles to provide an 
in-situ explanation (G7). 
Pattern. Since the highlighting of spots is compatible with the 
environment (shown on leaves), it adopts the implicit pattern (G8). 
The rest of the texts of the explanation uses the explicit pattern. 

Our two examples demonstrate XAIR’s ability to guide XAI 
design in AR in various scenarios. In Appendix B.2, we provide ad-
ditional everyday AR scenarios to further illustrate its practicality. 

7 EVALUATION 
In addition to showing examples to illustrate the use case of XAIR, 
we also conducted two user studies to evaluate XAIR. The frst study 
was from the perspective of designers (as XAIR users) to evaluate 
XAIR’s ability to assist designers during their design processes 
(Sec. 7.1). The second study was from an end-user perspective and 
evaluated XAIR’s efectiveness at achieving a user-friendly XAI 
experience in AR. We measured the usability of the real-time AR 
experiences that were developed based on the design examples 
proposed by designers (Sec. 7.2). 
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7.1 Study 3: Design Workshops 
We conducted one-on-one design workshops with designers to 
investigate whether the framework could support their design 
processes, inspire them to identify new design opportunities, and 
achieve efective designs. 

7.1.1 Participants. Future XAI and AR designers can come from 
various backgrounds, so we recruited 10 participants (4 Female, 6 
Male, Age 32 ± 6) from a technology company as volunteers. Three 
were XAI algorithm researchers, four were product designers, and 
three were HCI/AR researchers. All participants were familiar with 
AI and AR, and none had participated in previous studies. 

7.1.2 Design and Procedure. We prepared two AR scenarios, both 
related to recipe recommendations while preparing meals. 

Case 1: Reliable Recipe Recommendation. Michael works in 
a sales company (general end-user, low digital literacy). He recently 
started a high-protein diet due to his workout routine. He opens the 
fridge and wants to make lunch. His AR glasses present a window 
on the fridge door and recommend an option that Michael usually 
has, but Michael wants to make sure that this option fts his recent 
diet changes. 

Case 2: Wrong Recipe Recommendation. Mary works in 
an AI company (high AI literacy) and has friends coming over for 
dinner, who are beef lovers. She opens the fridge and sees steak. 
However, her AR glasses mistakenly recognize steak as salmon 
with a medium level of confdence 1, and recommends a few recipes 
that use salmon. She is confused and wonders how she can correct 
the recommendations. 

Since generating explanations is not the focus of the framework, 
we prepared examples for the seven explanation content types (Ap-
pendix B.3). Participants were free to use our examples, or propose 
their own (without the need to design how an algorithm could 
generate them). 

Participants frst used their expertise and intuition to propose 
XAI designs for the two cases before being shown the framework. 
They spent 10 minutes on each case. Participants were encouraged 
to think aloud and describe their design via text and simple sketches. 
Then, after XAIR was introduced, they spent another 10 minutes 
following the three parts and eight guidelines and applied them to 
the two cases, resulting in another version of the design. The order 
of the two cases was counterbalanced. 

To quantify the utility of XAIR, we employed the Creativity 
Support Index (CSI, 1-10 Likert scale) [55] and System Usability 
Scale (SUS) [24]. Since both scales were originally designed for tools 
or systems, the language was modifed from “tools” and “system” 
to “framework” and “guidelines”. At the end of the workshop, we 
conducted a semi-structured interview that began with the question: 
“Do you think the framework and guidelines are helpful? If so, in 
what aspects they are helpful?” Each workshop lasted 90 minutes. 
Two researchers independently coded the qualitative data using 
thematic analysis and discussed it to reach an agreement. 

1If the system has low-level confdence, the expected cost of making mistakes 
will be higher than the cost of asking for users’ input, so the system should ask for 
users’ confrmation about the ingredients they have on hand before presenting recom-
mendations (e.g., asking “Is this salmon or steak?”). In this scenario, the confdence is 
at the medium level, thus the system provides recommendations, but is still aware of 
the potential to make mistakes. 

7.1.3 Design Results. After using XAIR, nine out of ten partici-
pants modifed their designs and preferred the updated version. 
One participant (P7) liked the design as it was and thought that 
the framework “perfectly supported the design”. Consistency was 
found among the designs, which indicated that XAIR could efec-
tively guide users through the design process. For example, Tab. 1 
presents two designers’ designs (images are rendered based on their 
proposals) of the reliable recommendation case. Their designs of the 
when part and most of the what part were the same. Tab. 2 presents 
another two designers’ designs of the wrong recommendation case 
(Case 2). Similarly, we also found consistent design choices between 
the two examples. 

Meanwhile, we also found variance across participants’ designs. 
For instance, in Case 1, P6 had a diferent consideration of User State 
than P2, in which P6 brought up a case where the user could hold 
something in their hand. In this case, P6 adopted the audio modality 
for manual trigger (the rightmost column of Tab. 1). Moreover, as 
shown in the rightmost column of Tab. 2, P9 proposed an interesting 
tweak that always highlighted ingredients (Input explanation type). 
Her reason was that it introduced “ultra-low cognitive cost”, thus 
there was no need to check the second auto-trigger condition. “I 
don’t think it is a violation of the guideline. Instead, I was inspired 
by the framework to consider this case.” This reveals that XAIR is 
fexible and can support the diverse creativity of users. 

7.1.4 Feedback Results. Participants provided positive feedback 
about the framework. Eight participants explicitly commented that 
XAIR was “useful/helpful”. The results of the CSI scores (Fig. 8) 
and the SUS scores (74 ± 6 out of 100, indicating good usability) 
both illustrate the good utility of XAIR. Four themes emerged in 
participants’ feedback. 

The Framework as a Useful and Comprehensive Reference. Con-
sistent with the feedback from the experts in Study 2 (Sec. 4.2), 
participants also found that the framework was a valuable hand-
book. For example, “This framework is an excellent reference point 
for people getting started designing XAI experiences... to check if they 
have missed things” (P4) and “I may not use it for every design de-
cision, but I would refer to it when I want to make sure that I have 
considered everything.” (P7) The comprehensiveness of XAIR thus 
helped participants perform a sanity check of their designs. 

Figure 8: CSI Scores of Design Workshops in Study 3 



Designer P2, Product Designer P6, XAI Researcher 

System Goal User Intent Assistance (to fnd a good recipe) 
Platform-

User Goal Reliability (to make sure the recipe fts the diet) Agnostic 
Key Factors User Preference: High protein food; History: Know these recommended recipes; 

User Profle AI Literacy: General end-user, low 

Contextual Info Location: Kitchen; Time: Noon; Environment: Various ingredients in the fridge 
AR-Specifc Activity: Opening the fridge to make lunch, Key Factors Activity: Opening the fridge to make lunch; 

User State possibly holding something Cognitive Load: Low Cognitive Load: Low 

Availability (G1) Always available Same as P2 

XAI Designs Manual-trigger, because the second condition of auto-
in AR: When Delivery (G2) trigger was not met given the System Goal, User Goal, Same as P2 

and User Profle. 

Content (G3) Input/Output & Why/Why-Not based on Fig. 5’s table Same as P2 

An explanation merging the Why and Input content types, An explanation of the Why part as “it needs to be priori-XAI Designs Detail - Concise (G4) 
as explaining “showing ingredients is also important” tized” in AR: What 

Same as P2; Cherry fower pictures to support the Why Detail - Detailed (G5) A list of the two explanation types in detail explanation 

Visual modality for explanations; 
Visual modality to ensure consistency with the recom-Modality (G6) Audio/visual modality for manual trigger if 
mendation interface the user is/isn’t holding something 

XAI Designs Textual format as the primary format; Graphic format 
in AR: How Paradigm - Format (G7) Textual format (protein icon) to support explanations 

Explicit pattern, presenting texts in the same window as Paradigm - Pattern (G8) Same as P2 the recommendations 

Table 1: Two Design Examples of Case 1: Reliable Recipe Recommendation. Participants’ quotes were presented in italic font. 
Among key factors, P2 and P6 had diferent thoughts on User State, which leads to diferent design choices of how - modality. 
The comparison indicates both consistency and variance between two designers’ examples. 
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Design Opportunity Inspiration. Participants also leveraged XAIR 
to inspire new ideas. P6’s original design did not consider the case 
where users’ hands could be busily holding ingredients. But the 
modality in the how part inspired him, i.e., “The framework reminded 
me to realize potential alternatives. It inspired me to think about 
not just one design, but a set of designs.” Moreover, participants 
found that XAIR could help generate baseline designs. “I could then 
further customize it for various scenarios.” (P8) The high scores for 
exploration (7.9±0.4 out of 10) and expressiveness (7.1±0.6) on the 
CSI also support this observation. 

Backing Up Design Intuitions. Some participants also found that 
the guidelines in XAIR could support their intuition. For instance, P7 
did not change her design after using XAIR, but was very excited to 
see the alignment, e.g., “Sometimes I am not sure whether my design 

intuition is right. It feels great that the framework can support it.” 
This could be part of the reason for the positive enjoyment score 
on the CSI (8.0±0.4). 

Time to Learn The Framework. Participants also commented that 
XAIR incorporates a lot of information and that they needed time to 
digest it, e.g.,“I need to go back and forth between the visual diagrams” 
(P10) and “the table [in Fig. 5] is useful but also pretty complex” (P4). 
This may explain the relatively low immersion score (4.4±0.5) on 
the CSI. Moreover, six participants Agreed or Strongly Agreed in 
response to the question “Need to learn a lot...” on the SUS. On the 
one hand, this shows XAIR’s comprehensiveness (covering multiple 
research domains), whereas on the other hand, this illuminates 
future directions to convert XAIR into a design tool. 



Designer P5, HCI/AR Researcher P9, Product Designer 

Platform-
Agnostic 

Key Factors 

System Goal 

User Goal 

User Profle 

User Intent Assistance (to fnd a good recipe for friends) 
Error Management (to calibrate the user’s trust for mid-level recognition confdence) 

Resolve Confusion (to understand why the recommendations are wrong) 

User Preference: Meet-lovers (friends); AI Literacy: Expert, high 

AR-Specifc 
Key Factors 

Contextual Info 

User State 

Location: Kitchen; Time: Evening; Environment: Various ingredients in the fridge 

Activity: Opening the fridge to make dinner; Cognitive Load: Low 

XAI Designs 
in AR: When 

Availability (G1) 

Delivery (G2) 

Always available 

Auto-trigger, because both conditions were met given the 
System Goal and User Goal 

Same as P5 

Auto-trigger; Besides, a new tweak to always spotlight 
ingredients automatically, since it introduced “ultra-low 
cognitive cost” 

XAI Designs 
in AR: What 

Content (G3) 

Detail - Concise (G4) 

Detail - Detailed (G5) 

Five Types: Input/Output, Why/Why-Not, How-To, Cer-
tainty, and How 

An explanation merging Why, Input, Certainty (color-
coding to show ingredient with a mid-level confdence), 
and How-To (selecting ingredients to change) 

A drop down menu of the fve types 

Same as P5 

An explanation Why and How-To; Besides, Input explana-
tions were shown by spotlighting ingredients, which can 
be selected and changed (How-To) 

Same as P5 

XAI Designs 
in AR: How 

Modality (G6) 

Paradigm - Format (G7) 

Paradigm - Pattern (G8) 

Visual modality 

Textual format 

Explicit pattern, presenting texts in the same window as 
the recommendations 

Same as P5 

Textual format as the primary format; Graphic format 
(spotlighting boundaries) to denote ingredients 

Explicit pattern for texts (same as P5); Implicit pattern for 
graphic spotlights 

Table 2: Two Design Examples of Case 2: Wrong Recipe Recommendation. 
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7.2 Study 4: Intelligent AR System Evaluation 
To demonstrate XAIR’s efectiveness, we show that the designers’ 
proposals using XAIR could achieve a positive XAI user experience 
in AR for end-users. Based on the designs proposed in Study 3, 
we took one example from each case and implemented a real-time 
intelligent AR system. We then evaluated the system’s usability. 

7.2.1 System Implementation. We selected one reliable recipe rec-
ommendation example from the left of Tab. 1 and one wrong recipe 
recommendation example from the left of Tab. 2. We then instan-
tiated the examples by implementing a real-time system on a Mi-
crosoft Hololens V2. The system had three major modules: a recog-
nition module, a recommendation module, and an interface module. 

For ingredient recognition, we trained a vision-based object de-
tection model that was a variant of the Vision Transformer from 
CLIP [173] on the LVIS [95] and Objects365 [197] datasets. We 
then added ImageNet22k and performed weakly-supervised train-
ing with both box and image level annotations [244]. The top 50 
ingredient-related classes from LVIS were retained, with an average 

F1 score of 81.1%. The model was run on Hololens’ egocentric cam-
era stream at 5 FPS to recognize ingredients. The model was used 
in Case 1, while in Case 2, misrecognition (i.e., recognizing steak as 
salmon) was manually inserted to create the designed experience. 

For recipe recommendation, the Spoonacular Food API [4] was 
used to obtain potential recipes given a set of ingredients. We 
then implemented an algorithm to rank the recipes based on user 
preference and recommend the top recipes (e.g., if a user prefers 
food that is fast to prepare, the recipes are sorted based on the 
cooking time). For the explanations, we developed a template-based 
explanation generation technique [242] to cover diferent types. 

Finally, the interface followed the designs in Tab. 1 and Tab. 2. 
Clicking on one recipe’s image would show the detailed instructions. 
An icon button under each recipe could be triggered to present short 
default explanations, followed by another button to display detailed 
explanations as a list of content types. 

7.2.2 Participants and Apparatus. Twelve participants (5 Female, 7 
Male, Age 32 ± 3) volunteered to join the study. None of the them 
had participated in previous studies. The two cases had the same 
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(a) Evaluation Setup 

(b) Evaluation Scores 

Figure 9: End-user Evaluation of The AR System in Study 
4. (a) Study Setup. (b) Evaluation Scores. Users had positive 
experience in both tasks. Note that tasks were evaluated 
separately and not meant to compare against each other. 

setup (except for the recognition error). We prepared a number 
of food ingredients on a shelf (including steak, but no salmon) to 
simulate the opening-a-fridge moment, as shown in Fig. 9a. 

7.2.3 Design and Procedure. Since there is no existing XAI design 
for AR systems, we compared the design examples with a baseline 
condition that only presented recommendations without explana-
tions. Note that for Case 2’s baseline condition, participants could 
still change the output by clicking a button that said “Doesn’t seem 
right? Click to see the next batch.” to ensure a fair comparison 2. 

We used a within-subject design. Participants started with one 
case and completed both conditions. They took a break and com-
pleted a questionnaire to compare the two conditions. Then, they 
completed the two conditions in the second case and completed 
a similar questionnaire. The case order was counterbalanced. The 
study took about 30 minutes and ended with a brief interview. 

The questionnaire contained six questions (1-7 Likert scale) com-
paring the two conditions. Three were from the XAI literature and 
measured the explanations’ efect on the system’s intelligibility, 
transparency, and trustworthiness. The other three questions asked 
about participants’ preferences towards the design choices of when, 

2Another baseline could have been to compare against designers’ old designs 
before using XAIR. However, we did not include this baseline since designers already 
explicitly preferred the new version that they created after using XAIR. 

what, and 3 how . The SUS was also administered to measure the 
usability of the system with explanations. 

7.2.4 Results. Participants strongly preferred the condition with 
explanations in both cases, especially Case 2, e.g.,“Seeing the expla-
nation automatically when the AR system makes mistakes is very 
helpful. It lets me know when I should adjust my expectation” (P2) 
and “the mistake [in Case 2] is understandable... salmon and steak 
can have similar colors and shapes. But if I didn’t see the explanation, 
I would be very confused.” (P9) This sentiment was also refected in 
participants’ high rating of the system’s intelligibility, transparency, 
and trustworthiness with the explanation (Fig. 9b). Moreover, the 
AR system received high SUS scores: 86 ± 3 in Case 1, and 80 ± 3 
in Case 2, both indicating excellent usability of the system. Partici-
pants also liked the design of the system, which was supported by 
the positive ratings for the when/what/how questions (see Fig. 9b). 
These results demonstrated that compared to the baseline, XAI 
design using XAIR can efectively improve the transparency and 
trustworthiness of AR systems for end-users. 

8 DISCUSSION 
XAIR defnes the problem space structure of XAI design in AR 
and details the relationship that exists between the factors and the 
problem space. By highlighting the key factors that designers need 
to consider and providing a set of design guidelines for XAI in AR, 
XAIR not only serves as a reference for researchers, but also assists 
designers by helping them propose more efective XAI designs in 
AR scenarios. The two evaluation studies in Sec. 7 illustrated that 
XAIR can inspire designers with more design opportunities and 
lead to transparent and trustworthy AR systems. In this section, we 
discuss how researchers and designers can apply XAIR, as well as 
potential future directions of the framework inspired by our studies. 
We also summarize the limitations of this work. 

8.1 Applying XAIR to XAI Design for AR 
Researchers and designers can make use of XAIR in their XAI 
design for AR scenarios by initially using their intuition to propose 
an initial set of designs. Then, they can follow the framework to 
identify fve key factors: User State, Contextual Information, System 
Goal, User Goal, and User Profle. The example scenarios in Sec. 6 
and Sec. 7 indicate how these factors can be specifed. Based on 
these factors, they would then work through the eight guidelines 
of when, what, and how, using Fig. 4-Fig. 6 to inspect their initial 
design and make modifcations if there is anything inappropriate or 
missing. Low-fdelity storyboards or prototypes of the designs can 
be tested via small-scale end-user evaluation studies. This would be 
an iterative process. In the future, when sensing and AI technologies 
are more advanced, it is promising that the procedures of identifying 
factors and checking guidelines could be automated. 

3Since a factorial study design to compare all XAIR design options would involve 
a large number of conditions (i.e., 2 options of when × at least 2 options of what × 2 
options of how), asking participants to undergo several scenarios would be too costly. 
Order efects would also be hard to counterbalance. So the three questions about 
when/what/how described other design choices by showing examples and asked about 
participants’ preferences. For instance, in Case 1’s when part, participants rated how 
much they agreed with the claim “I prefer to have explanations triggered manually by 
me, compared to being triggered automatically.”, or vice-versa in Case 2. 
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8.2 Towards An Automatic Design 
Recommendation Toolkit 

In Study 3, more than one user mentioned the possibility of convert-
ing the framework into an automatic toolkit. For example, P3 was 
thinking aloud when using XAIR in the study, “If this framework 
is described as an algorithm, the fve key factors can be viewed as 
the input of the algorithm... and the output is the design of the three 
questions.” There are a few decision-making steps in the current 
framework that involve human intelligence. For example, when de-
signing the default explanations in what - detail, designers need to 
consider users’ priority under a given context to determine which 
explanation content type to highlight. When picking the appro-
priate visual paradigm, designers need to determine whether the 
explanation content is more appropriate in a textual or graphical 
format, as well as whether the content can be naturally embedded 
within the environment. Assuming future intelligent models can 
assist with these decisions, XAIR could be transformed into a design 
recommendation tool that could enable designers and researchers 
to experiment with a set of User State, Contexts, System/User Goals, 
and so on. This could achieve a more advanced version of XAIR, 
where XAIR are fully automated as an end-to-end model: determin-
ing the optimal XAI experience by inferring the fve key factors in 
real time. This is an appealing direction. However, although fac-
tors such as Context and System Goal are easier to predict with a 
system, the inference of User State/Goal is still at an early research 
stage [21, 71, 99]. Moreover, extensive research is needed to validate 
the adequacy and comprehensiveness of the end-to-end algorithm. 
This also introduces the challenge of nested explanations in XAIR 
(i.e., explaining explanations) [154], which calls for further study. 

8.3 The Customized Confguration of XAI 
Experiences in AR 

The experts in Study 2 and the designers in Study 3 brought up 
the need for end-user to control XAI experiences in AR, e.g.,“XAIR 
can provide a set of default design solutions, and users could further 
customize the system” (P12, Study 2) and “I personally agree with 
the guidelines, but I can also imagine some users may want diferent 
design options. So there should be some way that allows them to select 
when/what/how... For example, a user may want the interface to be in 
an explicit dialogue window all the time [related to how]. We should 
support this.” (P8, Study 3) This need for control suggests that to 
achieve a personalized AR system, designers should provide users 
with methods to confgure their system, so that they can set up 
specifc design choices to customize their XAI experience. Such 
personalization capabilities may also be used to support people with 
accessibility needs (also mentioned by P2 in Study 3), e.g., visually 
impaired users can choose to always use the audio modality. 

8.4 User-in-The-Loop and Co-Learning 
During the iterative expert workshops (Study 2, Sec. 4.2), experts 
mentioned an interesting long-term co-learning process between 
the AR system and a user. On the one hand, based on a user’s 
reactions to AI outcomes and explanations, a system can learn 
from the data and adapt to the user. Ideally, as the AR system bet-
ter understands the user, the AI models would be more accurate, 
thus reducing the need for mistake-related explanations (e.g., cases 

where System Goal as Error Management). On the other hand, the 
user is also learning from the system. “Users’ understanding of the 
system and AI literacy may change as they learn from explanations” 
(P4, Study 2). This may also afect the user’s need for explanations. 
For example, the user may have less confusion (User Goal as Re-
solving Surprise/Confusion) as they become more familiar with the 
system. Meanwhile, they may become more interested in explor-
ing additional explanation types (User Goal as Informativeness). 
Such a long-term and co-learning process is an interesting research 
question worth more exploration. 

8.5 Limitations 
There are a few limitations to this research. First, although we high-
lighted promising technical paths within the framework in Sec. 5, 
XAIR does not involve specifc AR techniques. The real-time AR sys-
tem in Study 4 implemented the ingredient recognition and recipe 
recommendation modules, but the detection of user state/goal was 
omitted. Second, our studies might have some intrinsic biases. For 
example, Study 1 only involved AR recommendation cases. Since 
everyday AR HMDs are still not widely adopted in daily life, we 
grouped 500+ participants only based on AI experience instead of 
AR experience. The experts and designers of our studies were all 
employees of a technology company. Study 4 only evaluated two 
specifc proposals from designers. Moreover, as there is no previous 
XAI design in AR, we were only able to compare our XAIR-based 
system against a baseline without explanation. Third, other than 
when, what, and how, there could be more aspects in the prob-
lem space, e.g., who and where to explain. Moreover, XAIR mainly 
focuses on non-expert end-users. Other potential users, such as 
developers or domain experts, were not included. The scope of the 
fve key factors may also not be comprehensive. For example, we 
do not consider user trust in AI, which is a part of User Profle that 
may be dynamic along with user-system interaction. These could 
limited the generalizability of our framework, but also suggests a 
few potential future work directions to expand and enhance XAIR. 

9 CONCLUSION 
In this paper, we propose XAIR, a framework to guide XAI design in 
AR. Based on a literature review of multiple domains, we identifed 
the problem space using three main questions, i.e., when to explain, 
what to explain, and how to explain. We combined the results 
from a large-scale survey with over 500 end-users (Study 1) and 
iterative workshops with 12 experts (Study 2) to develop XAIR and 
a set of eight design guidelines. Using our framework, we walked 
through example XAI designs in two everyday AR scenarios. To 
evaluate XAIR’s utility, we conducted a study with 10 designers 
(Study 3). The study revealed that designers found XAIR to be a 
helpful, comprehensive reference that could inspire new design 
thoughts and provide a backup of designer intuitions. Moreover, to 
demonstrate the efectiveness of XAIR, we instantiated two design 
examples in a real-time AR system and conducted another user 
study with 12 end-users (Study 4). The results indicated excellent 
usability of the AR system. XAIR can thus help future designers 
and researchers achieve efective XAI designs in AR and help them 
explore new design opportunities. 
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A APPENDIX A: EARLIER VERSIONS OF XAIR 
We provide the initial versions of the framework that were used at the beginning of the three iterative workshops (from Fig. 10 to Fig. 12). 
These examples show how XAIR improved throughout the workshops. 

Figure 10: Version 1 before The 1rd Iterative Expert Workshop (Study 2) 
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Figure 11: Version 2 before The 2rd Iterative Expert Workshop (Study 2). Main updates from Version 1: (When) Add dimensions 
and update the connection between the key factors and the dimensions. (What) Add User Goal and User Profle into the content 
type table. (How) Reorganize according to the dimensions and simply the structure. 
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Figure 12: Version 3 before The 3rd Iterative Expert Workshop (Study 2). Main updates from Version 2: (When) Update the 
connection between the key factors and the dimensions. (What) Simplify the structure and provide default option as guidance. 
(How) Remove the “location” dimension and improve the visual design. 
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B APPENDIX B: DETAILS OF APPLICATION SCENARIOS 

B.1 Explanation Details for The Two Applications 
We present a more structured summary of the two scenarios in Sec. 6, together with examples of all explanation content type (Tab. 3). 

Scenario Info Scenario 1: Route Suggestion Scenario 2: Plant Fertilization Reminder 

Scenario 

Nancy (AI expert, high AI literacy) is jogging in the 
morning on a quiet trail. Since it is the cherry-blossom 
season and Nancy loves cherries, her AR glasses display 
a map beside her and recommend a detour. Nancy is 
surprised since this route is diferent from her regular 
one, but she is happy to explore it. She is also curious 
to know the reason this new route was recommended. 

Sarah (general end-user, low AI literacy) was chatting 
with her neighbor about gardening. After she returned 
home and sat on the sofa, her AR glasses recommended 
instructions about plant fertilization by showing a care 
icon on the plant. Sarah is concerned about technology 
invading her privacy, and wants to know the reason 
behind the recommendation. 

Platform-
Agnostic 

Key Factors 

System Goal 

User Goal 

User Profle 

User Intent Discovery (new route) 

Resolve Surprise 
User Preference: Cherry blossom tree lover; 
History: Regular jogging in the morning; 
AI Literacy: Expert, high 

Trust Building (clarifcation) 

Privacy Awareness 
User Preference: Plant enthusiast; 
History: Did not care of the plant for a while; 
AI Literacy: General end-user, low 

AR-Specifc 
Key Factors 

Contextual Info 

User State 

Location: Outdoor; Time: Morning; 
Environment: Trails, streets 
Activity: Jogging; 
Cognitive Load: Low 

Location: Home; Time: Afternoon; 
Environment: Living room furniture, the plant 
Activity: Sitting on the sofa; 
Cognitive Load: Low 

Explanation 
Content Type 
Examples 

Input/Output 

Why/Why-Not 

How 

Certainty 

Example 

What-If 

How-To 

This route is recommended based on seasons, your rou-
tine and preferences. 
The route has cherry blossom trees that you can enjoy. 
The length of the route is appropriate and fts your 
morning schedule. 
This algorithm fnds and ranks possible routes based 
your location and other people who share similar pref-
erences to you. 
Match rate between this route’s condition and your 
preference: 93% 

These photos captured memories about jogging during 
cherry blossom season. 
The recommended route will be a shorter one if you jog 
in the evening. 

Disable the “season option” to return to the old route. 

The system checks the plant’s current status by visually 
scanning the plant. 

The plant has abnormal spots on the leaves, which indi-
cates fungi or bacteria infection. 

The system checks the plant’s visual appearance, then 
searches online to fnd ways to cure it. 

The chance of the plant having disease is high (94%). 

These are some images of other plants with similar 
symptoms. 

N/A 

N/A 

Table 3: Details of The Two Application Scenarios in Sec. 6. “N/A” indicates that this particular explanation type is not applicable 
for this case. The same below. 



Scenario Info Scenario 3: Food Rec for A Movie Night Scenario 4: Podcast Rec while Driving 

Scenario 

Emma (general end-user, low AI literacy) has a few 
friends over for a small party. They decide to watch a 
Bollywood movie and now they are about to order food. 
The AR glasses recommends ordering from an Indian 
restaurant. Mary never heard of this restaurant before, 
but she loves this idea. She is also curious about the 
reason of this recommendation. 

Jef (general end-user, low AI literacy) is about to drive 
to work. The AR glasses recommends a new podcast 
“TEDx Shorts” that Jef is unfamiliar with. However, 
the topic is interesting and Jef wants to give it a try. 
Meanwhile, Jef is curious to know the reason for this 
recommendation. 

Platform-
Agnostic 

Key Factors 

System Goal 

User Goal 

User Profle 

User Intent Assistance (fnd good food) 

Reliability, Informativeness 
User Preference: Everyone’s food preferences; 
History: Just decided to watch a Bollywood movie; 
AI Literacy: General end-user, low 

User Intent Discovery (new podcast) 

Informativeness 
User Preference: Topic interests; 
History: Morning driving routine; 
AI Literacy: General end-user, low 

AR-Specifc 
Key Factors 

Contextual Info 

User State 

Location: Indoor; Time: Evening; 
Environment: Home with a group of friends 
Activity: Hanging out with friends; 
Cognitive Load: Low to Medium 

Location: Outdoor; Time: Morning; 
Environment: Street conditions 
Activity: About to Start Driving to Work; 
Cognitive Load: High 

Explanation 
Content Type 
Examples 

Input/Output 

Why/Why-Not 

How 

Certainty 

Example 

What-If 

How-To 

This restaurant is recommended based on everyone’s 
food preference and movie genre. 

The food fts everyone’s food preferences and matches 
the genre of the movie you are watching. 

The algorithm flters the restaurants by food preferences 
and then fnds the best match between the food and the 
related activity. 

Match score between the restaurant and the food pref-
erence and the movie: 90% 

Last time, everyone enjoyed Chinese food while watch-
ing a Chinese movie. 

If movie genre is disabled, other cuisines would be rec-
ommended. 

N/A 

The recommendation takes your playlist history and 
driving routine into account. 

This podcast’s topic is in line with your interest, and its 
length fts your expected driving time. 

The algorithm detects that it’s morning and you are 
driving to work, then recommends the new podcast 
whose topic may be of interest to you. 

The podcast was liked by 85% of people with similar 
interests as you. 

“The Daily” and “Fresh Air” are other appropriate ex-
amples when you drove to work 

If the commute is longer, there are other episodes that 
may be of interest to you. 

To listen to previous podcasts, you can set history as 
the main recommendation factor. 

XAI Designs 
in AR: When 

Availability (G1) 

Delivery (G2) 

Always available 

Auto-trigger as both conditions is met (enough capacity 
and the user is not familiar with the recommendation). 

Always available 

Manual-trigger (high cognitive load during driving). 

XAI Designs 
in AR: What 

Content (G3) 

Detail - Concise (G4) 

Detail - Detailed (G5) 

Input/Output & Why/Why-Not 

The Why part of the explanation examples. 

A list of the two explanation content types, plus images 
of the movie and food to support the Why part. 

Input/Output & Why/Why-Not 

The Why part of the explanation examples. 

A list of the two explanation types. 

XAI Designs 
in AR: How 

Modality (G6) 

Paradigm - Format (G7) 

Paradigm - Pattern (G8) 

Visual modality. 

Textual format, plus graphical format in the detailed 
explanations. 

Explicit pattern, presenting texts in the same window 
as the recommendations. 

Audio modality 

N/A 

N/A 

Table 4: Additional Application Examples of XAIR on Two Recommendation Scenarios. 
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B.2 Additional Application Scenarios 
We further applied XAIR to additional everyday AR scenarios to illustrate the practicability of XAIR. The four scenarios cover extra indoor & 
outdoor recommendations (Tab. 4), as well as AR-based intelligent instructions and automation aside from recommendations (Tab. 5). 



Scenario Info Scenario 5: Cooking Instructions Scenario 6: Automatic Do-Not-Disturb Mode 

Scenario 

Lisa (general end-user, low AI literacy) has recently been 
learning how to cook. She wants to try out a new recipe 
for today’s lunch. She picks “Poached Egg on Avacado 
Toast” and starts to follow the instructions. After she 
takes the eggs out of the fridge, the AR glasses prompts 
to boil the egg for 1 min. Lisa is curious about the time 
recommendation and wants to understand what the 
prompt is based on. 

Jef (general end-user, low AI literacy) is about to drive 
to work. The AR glasses recommends a new podcast 
“TEDx Shorts” that Jef is unfamiliar with. However, 
the topic is interesting and Jef wants to give it a try. 
Meanwhile, Jef is curious to know the reason for this 
recommendation. 

Platform-
Agnostic 

Key Factors 

System Goal 

User Goal 

User Profle 

User Intent Assistance (learn the recipe) 

Reliability 

User Preference: The purpose of learning 
History: Following this instruction for the 
AI Literacy: General end-user, low 

how 
frst 

to cook;
time; 

 

User Intent Discovery (new podcast) 

Informativeness 

User Preference: Topic interests; 
History: Morning driving routine; 
AI Literacy: General end-user, low 

AR-Specifc 
Key Factors 

Contextual Info 

User State 

Location: Kitchen; Time: Noon; 
Environment: Cookwares and ingredients 
Activity: Cooking; 
Cognitive Load: High 

Location: Outdoor; Time: Morning; 
Environment: Street conditions 
Activity: About to Start Driving to Work; 
Cognitive Load: High 

Explanation 
Content Type 
Examples 

Input/Output 

Why/Why-Not 

How 

Certainty 

Example 

What-If 

The guidance is based on the instruction and your cur-
rent stage. 

Boiling eggs for one minute will result in soft-boiled 
eggs with slightly frm whites and a runny egg yolk. 
This is how people prefer soft-boiled eggs with toast. 

The algorithm detects your activity and recognizes 
which stage you are in, then it provides the guidance 
for the next step. 

The recognition of activity has a high certainty (88%). 

N/A 

Other possible ways of cooking eggs, such as scrambled 
eggs, if you want to explore other recipe instructions. 

Last week you turned on smart do-not-disturb mode. 
The mode is based on your location, time, and your 
ongoing activity. 

This setting automatically blocks notifcations when 
you are at the ofce during the working hour and work-
ing on the laptop. 

The system detects your current context and activity, 
and checks whether they meet your authored settings. 
If so, the Do-Not-Disturb mode will be turned on. 

The recognition of the time, location and current activ-
ity has a high certainty of 92%. 

N/A 

When you are not in the ofce, or it is out of working 
hours, or you are not working in front of the laptop, the 
setting will not be turned on. 

How-To N/A 
You can update any of the three conditions to change 
the moment the setting it’s activated. 

XAI Designs 
in AR: When

Availability (G1) 

Delivery (G2) 

Always available 

Manual-trigger (high cognitive load during cooking). 

Always available 

Manual-trigger (limited capacity in ofce). 
   

XAI Designs 
in AR: What 

Content (G3) 

Detail - Concise (G4) 

Detail - Detailed (G5) 

Input/Output & Why/Why-Not 

The Why part of the explanation examples. 

A list of the two explanation types, plus images 
soft-boiled eggs to support the Why part. 

of the 

Input/Output, Why/Why Not, How to, Confdence, How 

A summary of Input, Why, and How-To as the user gets 
confused and wants to change the output. 

A list of the fve types. 

XAI Designs 
in AR: How 

Modality (G6) 

Paradigm - Format 

Paradigm - Pattern 

(G7) 

(G8) 

Visual modality. 

Textual format, plus graphical format in the detailed 
explanations. 

Explicit pattern, presenting texts in the window besides 
the timer. 

Visual modality 

Textual format 

Explicit pattern, presenting texts in front of the user. 

Table 5: Additional Application Examples of XAIR on Intelligent Instructions and Automation. 
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Scenario Info Case 1: Reliable Recipe Recommendation Case 2: Wrong Recipe Recommendation 

Explanation 
Content Type 
Examples 

Input/Output 

Why/Why-Not 

How 

Certainty 

Example 

What-If 

How-To 

This recipe comes from the items detected in the fridge: egg and shrimp, 
and take your diet into account. 

This recipe fts your diet and food preference. It is recommended based 
on the rich amount of protein: 32g. 

The algorithm recognizes ingredients in the fridge, fnds and ranks 
recipes based on the available ingredients and your diet preference. 

Match rate between the recipe and the food preference & ingredients : 
82%. 

N/A 

More recipes if you want to try other cuisines. 

Disable the diet option to see previous recipes before you went on the 
high-protein diet. 

This recipe is based on friends’ food preferences and the detected in-
gredients in your fridge: salmon and carrot. 

This recipe matches your friends’ preference. It is recommended based 
on the popularity: 3201 people liked it. 

The algorithm frst recognizes ingredients in the fridge, fnds and ranks 
recipes based on the available ingredients and food preference. 

The recognition of salmon is uncertain (confdence 71%). It is not sure 
whether salmon or steak (recognition confdence 29%). 

N/A 

Diferent recipes if your friends want to try other cuisines. 

Select the right ingredients to change the recommendations: salmon or 
steak [clickable buttons]. 

Table 6: Details of The Two Cases in Sec. 7. Examples are “N/A” as they are already multiple examples in the recommendations. 
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B.3 Explanation Details of the Scenarios in Study 3 & 4 
Tab. 6 shows the explanation examples presented to designers in Study 3. 
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