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ABSTRACT
Past research regarding on-body interaction typically requires
custom sensors, limiting their scalability and generalizability.
We propose EarBuddy, a real-time system that leverages
the microphone in commercial wireless earbuds to detect
tapping and sliding gestures near the face and ears. We
develop a design space to generate 27 valid gestures and
conducted a user study (N=16) to select the eight gestures
that were optimal for both human preference and microphone
detectability. We collected a dataset on those eight gestures
(N=20) and trained deep learning models for gesture detection
and classification. Our optimized classifier achieved an
accuracy of 95.3%. Finally, we conducted a user study
(N=12) to evaluate EarBuddy’s usability. Our results show that
EarBuddy can facilitate novel interaction and that users feel
very positively about the system. EarBuddy provides a new
eyes-free, socially acceptable input method that is compatible
with commercial wireless earbuds and has the potential for
scalability and generalizability.

Author Keywords
Wireless earbuds; face and ear interaction; gesture recognition

CCS Concepts
•Human-centered computing → Human computer
interaction (HCI); Interaction techniques; Ubiquitous and
mobile computing systems and tools;

INTRODUCTION
Past research from the human-computer interaction
community has explored the use of surfaces on the body
like the palms [65], arms [26], nails [27], and teeth [71]
for convenient, subtle, and eyes-free communication [20].
Leveraging these surfaces has typically required custom
sensors—fingertip cameras [60], ultrasonic wristbands [77],
+ indicates the corresponding author.
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Figure 1: EarBuddy leverages the microphone embedded in wireless
earbuds to recognize gestures on the face or around the ears.

and capacitive fingernails [27], etc. Such custom sensors limit
the scalability and generalizability to other applications.

Our work takes advantage of the growing popularity of
wireless earbuds as ubiquitous sensors for on-body sensing.
Apple sold tens of millions of AirPods [16]. Other companies
like Samsung [7] and Sony [8] are expected to show
comparable trends in uptake of their earbuds. Although
wireless earbuds are mainly used for audio output (i.e., playing
music and videos), most products also include a microphone
for audio input so that people can respond to phone calls.
The fact that wireless earbuds rest within a person’s ears
means that their microphone is conveniently situated near
multiple surfaces that are suitable for on-body interaction: the
cheek, the temple, and the ear itself. Tapping and sliding
fingers across these surfaces generates audio signals that can
be captured by an earbud, transmitted to a smartphone via
Bluetooth, and then processed on-device to interpret gestures.

This observation gives rise to EarBuddy, a novel eyes-free
input system that detects gestures performed along users’ faces
using wireless earbuds. As shown in Figure 1, users can easily
control a music player or react to a notification by EarBuddy.
Since EarBuddy augments the capabilities of devices that are
already commercially available, our technique can easily be
deployed through software updates to the phone to provide
new interaction experiences for users.
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We develop a comprehensive design space with 27 gestures
along the side of a person’s face and ears. Since users
cannot realistically remember all 27 gestures and some
gestures are not easily detectable by earbud microphones,
we conducted a user study (N=16) to narrow our gesture
set to eight gestures. We carried out a second user study
(N=20) to collect a thorough dataset with those gestures
in both a quiet environment and an environment with
background noise. We used that data to train a shallow
neural network binary classifier to detect gestures and a
deep DenseNet [25] to classify gestures. Our best classifier
achieved a classification accuracy of 95.3%. Finally, we built a
real-time implementation of EarBuddy using those models and
conducted a third user study (N=12) to evaluate EarBuddy’s
usability. Our results show that EarBuddy sped up interactions
by 33.9 - 56.2% compared to touchscreen interactions. Users
provided positive feedback as well, saying that EarBuddy can
be used easily, conveniently, and naturally.

Our contributions of this paper are threefold:

• We propose EarBuddy, a novel eyes-free input technique
supported by wireless earbuds without the need for
hardware modification, and implement a real-time
instantiation of EarBuddy.
• We create a two-dimensional design space for gestures near

the face and ears. Our first user study selects the gesture
set for EarBuddy that is optimized for user preference and
microphone detectability.
• We train a gesture recognition model based on a second data

collection study, and evaluate the usability of EarBuddy in
a third user study.

RELATED WORK
We provide a general overview of on-body interaction with
special attention towards interactions with the face and ears.
We then review research on sound-based activity recognition.

On-Body Interaction and Sensing
On-body interaction refers to the use of the human body as
an input or output channel [20]. A wide range of human body
parts have been leveraged for on-body interaction. Examples
include the palm [19, 20, 65], arms [18, 20, 26], fingers [24, 67,
70], nails [27, 63], the face [26, 57, 74], ears [28, 36, 44], and
teeth [10, 71], and even clothing that goes beyond skin [48, 56].
Researchers have used various sensing techniques to support
these interaction surfaces. For example, Harrison et al. [20]
used a ceiling-mounted infrared camera to locate a person’s
arms and hands and a digital light processing projector to
shine interfaces onto the user’s limbs. FingerPing by Zhang
et al. [77] identified hand postures using an ultrasonic speaker
on the thumb and speakers placed at the thumb and wrist.
Through capacitive sensing, Kao et al. [27] created printable
electrodes that can be placed on a person’s fingernails to enable
touch gestures on nails. Finally, Weigel et al. [67] explored
various forms of deformation sensing (e.g., capacitive and
strain sensors) for on-skin gestures.

The aforementioned techniques require additional hardware,
thus limiting their deployability. In this paper, we strictly rely

on the microphone that is built into commercially available
wireless earbuds to detect gestures on the face and ears.

Interaction on the Face and Ears
Within the realm of face and ear gestures, Serrano
et al. [57] examined the overall design space on the face
for head-mounted display interaction, with special attention
paid towards social acceptability. Their findings suggest that
the cheek and forehead are the most practical locations for
gesture sensing. However, they did not use their findings
to propose a specific gesture set for the face. Lissermann
et al. [36] offer three categories of interaction with the ear rim:
touch (slide, single- and multi-touch), grasp (bend, pull lobe,
and cover), and mid-air (hover and swipe). Inspired by the
related work and literature on gestures performed with touch
screens [11, 38, 72], we propose a two-dimensional design
space for touch-based interaction on the face and ears.

To detect face- and ear-based gestures, Masai et al. [41]
installed photo reflective sensors on glasses to measure
cheek deformation during different facial expressions [42].
Yamashita et al. [73] used similar sensors on a head-mounted
display to detect face-pulling gestures. Kikuchi et al. [28]
augmented earbuds with photoreflective sensors around the
periphery; as users tugged on their ear, the distance between
the ear’s antihelix and the sensors changed to produce
distinguishable signals. Lissermann et al. [36] detected
gestures behind the ear using an array of capacitive sensors.
Wang et al. [66] used the capacitive phone screen to capture
the contact between the ear and the screen to help blind users
to interact with the phone with ear. Tamaki et al. [62] mounted
a camera and a projector on earbuds to recognize hand gestures
and provide visual feedback. Lastly, Metzger et al. [44] added
a proximity sensor to earbuds to detect in-air gestures near
the ear. As with the broader literature concerning on-body
interaction, none of this work investigates gesture recognition
without the use of additional hardware. To the best of our
knowledge, we are the first to detect touch-based gestures
on the face and ears using existing commercially available
wireless earbuds for interaction.

Sound-Based Activity Recognition
Sound can capture rich information about a person’s physical
activity and social context, thus leading researchers to use
audio signals for activity recognition. For example, Chen
et al. [12] used acoustic signals on a wooden tabletop to
recognize users’ finger sliding. These methods have used
a range of classification models, ranging from traditional
machine learning models like support-vector machines [15]
and hidden Markov models [14] to deep learning models
like fully connected networks [31] and convolutional neural
networks [12, 23, 69]. Models for activity recognition
have also leveraged different types of audio features. Lu
et al. [39], for example, demonstrated that time-based
features like zero-crossing rate and low energy frame rate
can be used to distinguish speech, music, and ambient
sound with a smartphone’s microphone. Mel-frequency
cepstral coefficients (MFCCs) are a particularly popular
choice for audio analysis because of how they distribute
spectrogram energy in accordance with human hearing. Stork
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Figure 2: EarBuddy pipeline overview. Audio augmentation and optimizer tuning techniques are used to tune the state-of-the-art vision model DenseNet
pre-trained on ImageNet Dataset.

et al. [61] used non-Markovian ensemble voting based on
MFCC features to have a robot distinguish 22 human activities
within bathrooms and kitchens. Laput et al. [32, 33] developed
custom hardware to distinguish 38 environmental events using
MFCCs and a pre-trained neural network.

Closer to our work, BodyScope [75] and BodyBeat [49]
combined time- and frequency-based features to classify
sounds recorded by a microphone pressed directly against a
person’s throat. Both systems recognize events like coughing
and chewing but hint at the idea of recording subtle sounds
like hums and clicks. EarBuddy builds on this idea, using deep
learning to classify gestures on the face and ears.

EARBUDDY DESIGN
EarBuddy allows people to perform tapping and sliding
gestures on their face and around their ears to interact with
devices. We leverage the fact that touching body parts
naturally produces subtle but perceptible sounds that can
be captured by wireless earbuds. We introduce both the
sound-capturing system and interaction design below.

System Design
EarBuddy recognizes gestures in two steps. First, a gesture
detector judges whether a gesture is present. If a gesture is
detected, the gesture is recognized by a classifier. Figure 2
illustrates the overall pipeline of the system, which we
describe in detail below. For the purposes of this paper,
we implement EarBuddy using Samsung’s Gear IconX 2018
wireless earbuds [7]. The built-in microphones of these
earbuds sample sound through a single channel at 11.025 kHz
with 16-bit resolution.

Detection
Gesture detection starts using a 180 ms sliding window with
a step size of 40 ms. Twenty MFCCs are extracted from the
window at each step and fed into a binary neural network
classifier [31, 61]. The classifier outputs a 1 whenever there
is audio content belonging to a gesture and a 0 otherwise.
Almost all gestures take longer than three single steps (> 120
ms), so the presence of a gesture should lead the classifier to
produce multiple 1’s in succession; however, temporal shifts
in the data and noise can make the classifier’s serial output
noisy. EarBuddy remedies this issue by using a majority
voting scheme where adjacent sequences of consecutive 1’s
are merged if they are separated by one or two 0’s. A gesture is
defined to be present whenever there are 3 or more consecutive

1’s, corresponding to a minimum gesture duration of 120 ms.
Whenever a gesture occurs, EarBuddy takes a 1.2 s segment
of raw audio (covers more than 99 % of the gestures) centered
on the sequence of 1’s and feeds it into the gesture classifier.

Classification
EarBuddy processes audio data for classification using
mel spectrograms, similarly to past work [23, 32]. Mel
spectrograms are generated by applying the short-time Fourier
transform with a 180 ms window and step size of 1200 / 224
= 5.36 ms, thus yielding a 224-length linear spectrogram that
can be converted into a 224-bin mel spectrogram. This process
produces a 224×224 input frame for each audio segment that
can be fed into a deep-learning classification model.

Deep learning models with large numbers of parameters are
very capable of accurately modeling data. However, training a
deep model from the scratch on a small dataset can easily
lead to overfitting. Transfer learning alleviates this issue
by pre-training a model from a large, well-labeled dataset
and then conducting additional training with the smaller
target dataset [46]. As EarBuddy converts audio signals
into mel spectrograms, the 1-D audio signal is transformed
into a 2-D image format. We tried transfer learning using
pre-trained vision models like VGG16 [58], ResNet [22], and
DenseNet [25]. We found that DenseNet, which is pre-trained
on ImageNet-12 [53], produced the best accuracy for our data,
leveraging the advantages of DenseNet: having a deep dense
network but relatively small number of parameters. DenseNet
is a network with one convolutional layer, four dense blocks,
and intermediate transition layers. We modify this architecture
after pre-training by replacing the last fully-connected layer
with two fully-connected layers, using a dropout layer [59]
a ReLU activation function [45] in between. Modifying the
output layer is required because DenseNet has 1000 possible
output classes for the ImageNet dataset [25], but EarBuddy
requires far fewer output classes (1 for each gesture). We train
the modified, pre-trained network on our dataset to produce
the final classification model used by EarBuddy.

Real-time System Implementation
We prototype EarBuddy using a ThinkPad T570 laptop with
a quad-core CPU processor to perform gesture recognition
in real-time. The wireless earbuds transmit the microphone
audio to the laptop via Bluetooth in 40 ms chunks. The chunks
are accumulated to identify the presence of gestures and
perform classification when needed. Despite the fact that our
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(a) Tap-based Gestures (b) Simple Slide-based Gestures (c) Complex Slide-based Gestures

Figure 3: Gesture Design of EarBuddy

Table 1: The names and shorthand identifiers for all 27 gestures that we investigated in this work: (T1-) single tap gestures, (T2-) double tap gestures,
(S-) simple sliding gestures, and (C-) complex sliding gestures.

T1-Temple T1-Cheek T1-Mandible T1-Mastoid T1-TopEar T1-MiddleEar T1-BottomEar
Single Tap
on Temple

Single Tap
on Cheek

Single Tap
on Mandible Angle

Single Tap
on Mastoid

Single Tap
on Top Ear Rim

Single Tap
on Middle Ear Rim

Single Tap
on Bottom Ear Rim

T2-Temple T2-Cheek T2-Mandible T2-Mastoid T2-TopEar T2-MiddleEar T2-BottomEar
Double Tap
on Temple

Double Tap
on Cheek

Double Tap
on Mandible Angle

Double Tap
on Mastoid

Double Tap
on Top Ear Rim

Double Tap
on Middle Ear Rim

Double Tap
on Bottom Ear Rim

SBF-Cheek STB-Cheek STB-Ear STB-Mandible STB-Ramus C-Pinch C-Lasso
Back-to-Front Slide

on Cheek
Top-to-Bottom Slide

on Cheek
Top-to-Bottom Slide

on Ear Rim
Top-to-Bottom Slide

on Mandible Base
Top-to-Bottom Slide

on Ramus Two Fingers Pinch Lasso on Cheek

SFB-Cheek SBT-Cheek SBT-Ear SBT-Mandible SBT-Ramus C-Spread
Front-to-Back Slide

on Cheek
Bottom-to-Top Slide

on Cheek
Bottom-to-Top Slide

on Ear Rim
Bottom-to-Top Slide

on Mandible Base
Bottom-to-Top Slide

on Ramus Two Fingers Spread

laptop does not have a GPU, the average computation time of
detection and classification is only 190ms. The average delay
between the completion of a gesture and the classification
result being returned is around 800 ms.

Interaction Design
People can produce different sounds by touching different
areas around their face and ears. This is because the face
and ears have unique structures with distinct combinations of
materials. For example, the ear rim is primarily composed
of cartilage, while the cheek is typically more fleshy. We
identified seven areas that can be used for interaction: the
temple, the cheek, the mandible angle, the mastoid, and the
top/middle/bottom of the ear rim.

Different sounds can also be produced by different touching
gestures. For instance, sliding gestures produce a sustained
high-frequency sound, whereas a tap produces a broadband
impulse. Past work has explored a number of touch-based
finger gestures [34, 57, 64] including tap-based gestures
(single- and double-tap) and slide-based gestures (straight
slide, lasso slide, and pinch-and-spread).

Together, the gesture’s position on the face and the action by
the fingers are the two dimensions that define our design space.
Using all possible pairs of options along those two dimensions
that are feasible to perform, we generate 27 gestures (Figure 3).
Single- and double-tap gestures can be performed at all 7

locations within our design space (Figure 3a), producing 14
tap-based gestures (T1-/T2-). Simple slide-based gestures, on
the other hand, can only be performed on larger areas of the
face: the cheek, the ear rim, the ramus, and the mandible
base (Figure 3b). At each location, sliding can be either
top-to-bottom (STB-) or bottom-to-top (SBT-). Because the
cheek is particularly wide, it is also possible to perform
back-to-front (SBF-) and front-to-back (SFB-) slides on it. The
cheek can also support complex sliding gestures (Figure 3c)
like a lasso motion (C-Lasso), a two-finger pinch (C-Pinch),
and a spreading gesture (C-Spread).

STUDY 1: GESTURE SELECTION
We wanted to narrow down the gesture set from 27 gestures to
a subset that can be naturally performed, quickly remembered,
and easily classified. Therefore, we conducted a study to
identify a subset of the most preferable gestures.

Participants and Apparatus
We recruited 16 participants (8 male, 8 female, age = 21.3 ±
0.9) via email and paper flyers. The study was conducted in a
quiet room with an ambient noise level around 35-40 dB. As
mentioned earlier, we implemented EarBuddy using a pair of
Samsung Gear IconX [7] for data collection.

Design and Procedure
Each participant performed all 27 gestures three times using
their right hand. The order of the gestures was pre-determined
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Figure 4: Example plots of all 27 gestures. For each plot, the left side is the waveform of the raw audio and the right side is the mel spectrogram. The
X-axis indicates the window size, which is 1.2 s.

to counterbalance ordering effects. For each gesture, the
experimenter led the participant through a brief practice phase
to ensure they could perform the gesture correctly. The
participant then followed instructions provided on a laptop
screen to perform gestures at pre-defined times; doing so
facilitated gesture segmentation for data analysis. After
performing the gesture three times, the participant was asked
to rate the gesture according to three criteria along a 7-point
Likert scale (1: strongly disagree to 7: strongly agree):

• Simplicity: “The gesture is easy to perform precisely.”
• Social acceptability: “The gesture can be performed without

social concern.”
• Fatigue: “The gesture makes me tired.” (Note: Likert scores

were reversed for analysis)

Results
Figure 4 shows example signals for all gestures. Figure 5
shows all gestures’ ratings, sorted by the sum of the scores.
We used the following aspects to select the best gestures:

1. SNR. We calculated each sample’s signal-to-noise ratio
(SNR) and removed the gestures that had an average
SNR lower than 5 dB. This removed eight gestures, many
of which were sliding-based gestures that either went
bottom-to-top or complex sliding gestures: SBT-Cheek,
SBT-Ear, SBT-Mandible, STB-Mandible, SBT-Ramus,
C-Spread, C-Pinch, C-Lasso.

2. Signal Similarity. We used dynamic time warping (DTW)
[54] on the raw data to calculate signal similarity between
pairs of gestures. We created a 27×27 distance matrix
where each entry was the average DTW distance across
all possible pairs of the corresponding gestures. We then
summed each row to calculate the similarity between
each gesture and all others. Gestures with total distances
lower than the 25th percentile were removed, since they
are most likely to be confused during classification.
Doing so removed T1-Temple, T1-Mandible, T1-TopEar,
T2-Mandible, T2-BottomEar.

Figure 5: Subjective ratings of all 27 gestures in terms of simplicity,
social acceptability, and fatigue (reversed).

3. Design Consistency. Prior work has shown that single-
and double-click gestures usually appear in a design space
together [51], i.e., if an interface supports single-click
gesture, it usually supports double-click gesture as well.
Therefore, for each single-tap gesture that was eliminated
before this point, the corresponding double-tap gesture was
removed, and vice versa. This eliminated T1-BottomEar,
T2-Temple, and T2-TopEar.

4. Preference. We used the subjective ratings to decide
between the remaining gestures. For each participant, each
gesture was ranked from first to last along each of the three
criteria. Those rankings were mapped to a score (first =
1, second = 2, etc.), and those scores were summed across
criteria and participants. We selected the ranked gestures
from the top to the bottom, and stopped selection once either
of the three criteria had a score below 4. This eliminated
SFB-Cheek, STB-Cheek, and SBT-Ear.

The gesture selection procedure resulted in 8 gestures.
Our final gesture set had 6 tapping gestures—single-
and double-tap on cheek (T1-Cheek and T2-Cheek),
mastoid (T1-Mastoid and T2-Mastoid), and middle ear
rim (T1-MiddleEar and T2-MiddleEar)—and 2 sliding
gestures—top-to-bottom slide on ear rim (STB-Ear) and ramus
(STB-Ramus).
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STUDY 2: DATA COLLECTION
After finalizing our gesture set, we conducted a second study to
collect more instances of those particular gestures and evaluate
both the detection and classification accuracy of EarBuddy.

Participants and Apparatus
We invited another 24 participants for this study. All
participants used earbuds on a daily basis and were right-hand
dominant. Software and hardware errors caused the collected
data to be corrupted for six of them. This left us with 18
participants (9 male, 9 female, age = 21.6 ± 1.3) with valid
data. The study was conducted with the same devices and
room as the previous study.

Noisy Environment
Handling ambient noise is one of the most salient challenges
for sound-based interaction techniques [13, 40]. Therefore,
this study was conducted in two sessions: one in a quiet
environment (quiet-session) and one in a noisy environment
(noisy-session). In the quiet-session, participants sat in
the room with minimal noise (38 dB on average). In the
noisy-session, standardized noise was generated by a stereo
playing a soundtrack at 55 dB [5]. The audio contains standard
ambient office noise such as talking, laughing, walking, and
typing. The soundtrack was started at a random timestamp for
each session to avoid systematic biases.

Design and Procedure
We conducted a within-subject study with a 2×8 factorial
design, with Session and Gesture being the factors. The order
of the two sessions and eight gestures was counterbalanced to
reduce ordering effects.

Participants were only required to perform the gestures on the
right side of their face. They first went through a 5-minute
practice phase to familiarize themselves with the eight gestures.
During the data collection, participants were asked to perform
each gesture 10 times in 5 rounds in both sessions, thus
generating 100 examples of each gesture per participant
(10 examples/round × 5 rounds/session × 2 sessions). To
validate the detection accuracy of EarBuddy, participants were
instructed to perform gestures in sync with a countdown timer
presented on a laptop screen. The timer counted down for
2 seconds, and then participants had another 2 seconds to
complete the gesture. Audio was recorded during those 4
seconds to capture audio both with and without gestures.
A 1-minute break was placed between each round, during
which participants were asked to remove the earbuds and then
put them back into their ears to allow for different earbud
positioning. The study lasted about 45 minutes.

Annotation
Three researchers examined all of the data to annotate the
start- and end-times of each gesture. They removed samples
obscured by noise due to some software issue (the audio
channel crashed, leading to large noise in the audio sample)
and hardware issue during data collection (occasionally the
built-in noise cancellation function was activated). 11,147
(77.4%) gesture samples remained in our dataset after filtering.

Figure 6: The distribution of three gesture types’ duration. The vertical
dashed lines indicate the 99th percentile of the duration of that type.

Figure 6 illustrates how long it took for participants to perform
the single-tap, double-tap, and slide gestures. Slide gestures
took the longest amount of time, with the 99th percentile being
1.2 s. EarBuddy uses this duration as the length of raw audio
input for gesture classification. Each gesture is segmented by
clipping a 1.2 s-long window of audio data centered at the
middle of its annotated range to produce the dataset we use to
evaluate gesture detection and classification.

GESTURE DETECTION AND CLASSIFICATION
To test the feasibility of EarBuddy, we trained two models
using the data that was collected in this study, one to segment
the audio (i.e., gesture detection) and one to recognize the
gesture in the segment (i.e., gesture classification).

Gesture Detection
We simulated real-time input by manually applying a 180 ms
sliding window across the data with 40 ms steps, the same rate
as our implementation of EarBuddy. If more than 50% of the
sliding window overlapped with the audio data related to a
manually annotated gesture, the window was considered to be
a positive gesture detection example; otherwise, the window
was negative. This procedure led to 120k positive samples and
252k negative samples for training and testing.

As described earlier, we converted each sliding window to a
vector of 20 MFCCs which was used as input for the gesture
classifier. A three-layer fully connected neural network binary
classifier [55] was trained on the data. The hidden layers had
100, 300, and 50 nodes from input to output, with intermediate
dropout layers. Using an 80-20 train-test split on all of the
samples produced an overall weighted accuracy of 92.6%
(precision: 91.7%, recall: 85.3%). After the classification
results were smoothed using the majority-vote algorithm
described earlier, 98.2% of the gestures were successfully
detected. Among the remaining 1.8% of gestures that were
missed, 0.4% were from the silent environment and 1.4% were
from the noisy environment, showing that noise complicated
gesture detection.

Gesture Classification
The manually annotated gestures were used to assess the
optimal performance of EarBuddy’s gesture classification
performance.
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Data Augmentation
Because our dataset was relatively small compared to what
is normally desirable for deep-learning, we augmented our
dataset by producing similar variations of the collected
examples. We did so using the following methods:

• Mixing Augmentation [32]: Noise from two common
scenarios—office noise [5] and street noise [9]—were
mixed with the raw audio data before they were converted
to mel spectrograms.
• Frequency Mask [47]: f consecutive mel frequency

channels [ f0, f0 + f ) were replaced by their average, where
f was chosen from a uniform distribution from 0 to the
maximum mel frequency channel v, and f0 was chosen
from [0,v− f ).
• Time Mask [47]: t consecutive time steps [t0, t0 + t) were

replaced by their average, where t was chosen from a
uniform distribution from 0 to the maximum time τ , and t0
was chosen from [0,τ− t).
• Horizontal Flip [22]: The mel spectrogram was flipped

horizontally.

Each of the four augmentation methods was independently
applied on the raw dataset with a probability of 50% during
each epoch of training.

Learning Optimization
Past literature has suggested that stochastic gradient descent
(SGD) [50] has better generalization than adaptive optimizers,
such as Adam [29, 68]. Therefore, we employed SGD as
the optimizer for the training, with the momentum parameter
at 0.9 [52] to accelerate convergence and the weight decay
regularization parameter at 0.0001 [30] to prevent overfitting.
These parameters are commonly adopted for SGD [35]. We
combined the linear graduate warm-up method [17] and the
cosine-annealing technique [37] to update the learning rate.
The learning rate started at 0.01, then climbed up to 0.1 in 20
epochs, then decayed in a cosine curve in the next 400 epochs.
Such a learning rate schedule has the advantage of fast (large
learning rate at the beginning) and robust (small rate at the
end) convergence.

Population Results
We trained two additional models as our baselines:

1. Twenty MFCCs were extracted in 40 ms steps, similarly
to what is done for EarBuddy. The mean and standard
deviation of the MFCCs were calculated to summarize each
gesture as a feature vector with 40 values. Those features
were used to train a random forest classifier.

2. A VGG16 Net [58] was trained from scratch on the mel
spectrogram images.

We mixed all users’ data together and randomly separated
them into an 80-20 train-test split. Table 2 provides
the classification performance of the baseline models and
variations of models. Pre-training with DenseNet, data
augmentation, and learning optimization each significantly
improved EarBuddy’s performance. The final model with
all techniques achieved an overall classification accuracy of
95.3% and an F1 score as 0.954 on the test set.

Table 2: Test results of different models and enhancing techniques.
Precision, recall, F1, and accuracy values are weighted across gestures.

Model Prec Rec F1 Acc

Random Forest on Means and Std
of 20 MFCCs over the window 0.607 0.631 0.620 0.602

VGG16 from scratch with Adam 0.637 0.645 0.640 0.629

Pre-trained VGG16 with Adam 0.769 0.755 0.762 0.761

Pre-trained ResNet with Adam 0.810 0.793 0.802 0.785

Pre-trained DenseNet with Adam 0.807 0.803 0.805 0.809

Pre-trained DenseNet with Adam +
Data Augmentation 0.872 0.872 0.872 0.872

Pre-trained DenseNet with SGD +
Data Augmentation 0.929 0.893 0.916 0.914

Pre-trained DenseNet with SGD +
Data Augmentation + Schedule 0.956 0.951 0.954 0.953

Note that these results included data from both the quiet
and noisy environments. When we trained our best model
configuration using data from each environment separately,
EarBuddy had overall classification accuracies of 93.8% and
92.5%, respectively. The decrease in accuracy from the quiet
to the noisy environment was expected due to the increased
noise in the latter. We also expected a slight drop in accuracy
when the data was separated into two halves because there was
less data to train each model.

Figure 7 presents the confusion matrix for the eight gestures
based on the best model in Table 2. The three double-tap
gestures had the highest accuracy (97.3%), followed by the
three single-tap gestures (94.4%) and the two sliding gestures
(93.1%). The STB-Ramus had the lowest accuracy (91.7%),
which may be explained by the relatively lower signal SNR
(see Figure 4). That error rate (8.3%) is about two times

Figure 7: Confusion matrix of the best model on test set. The overall
weighted precision, recall, F1 score, and accuracy are 0.956, 0.951, 0.954
and 0.953, respectively.
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Figure 8: Results with the leave-one-user-out data plus the ignored
user’s additional samples. Error bar is the standard error. The
population accuracy is when all users’ data is merged for training.

higher than the average error rate (4.7%). For this reason, we
eliminated it and only evaluated the remaining seven gestures
in the real-time system in our final evaluation study.

Leave-One-User-Out Results
The audio signal for the same gesture can appear different
across users for a couple of reasons: (1) users may perform
gestures in unique ways, or (2) users’ unique body structure
can produce sounds in slightly different ways. To investigate
the feasibility of a model that could recognize gestures by
new users, we trained our best model configuration using
leave-one-user-out cross-validation. Doing so produced an
overall accuracy 82.1%, a 13.2% drop from the model that
was trained within users.

In a real-world situation, it is realistic to ask a new user to
perform each gesture a few times before using the system
(e.g., during a tutorial). The system can utilize these samples
to apply additional training on a pre-trained model. We
tested this approach by saving our leave-one-user-out model
and further training it on a small number of examples of
each gesture from the ignored user. Figure 8 shows how
the inclusion of a small amount of data from the new user
can improve model performance. With just five gestures,
the performance improved to 90.1%. The performance
approached the population test accuracy with additional
samples, reaching 93.9% with 30 gestures.

STUDY 3: USABILITY EVALUATION
Our final user study evaluated a real-time implementation of
EarBuddy on its performance and usability.

Participants and Apparatus
Twelve participants (8 male, 4 female, age = 21.4 ± 0.8) from
Study 2 were invited back to evaluate the system. The same
earbuds and room were used for this study, with the software
issue in Study 2 fixed. To test the robustness of our system,
the same office audio [5] was employed to simulate a noisy
office. We employed an Android phone as the interface where
all the gesture results would appear. The phone communicated
with the laptop via TCP. The laptop was also used to instruct
participants on when to perform which tasks.

Design
We compared our input technique with two baselines in three
common application tasks. We conducted a a 3×3 factorial
within-subject study with Task and Setup being the factors.

Figure 9: UI design of the three tasks for evaluation. The two physical
buttons on the left edge are used for volume adjustment in music
application. And the button on the right edge is used for muting a call.

Table 3: The design of the mapping of EarBuddy gestures and on-screen
touch operations for the three applications examined in the user study.

Task Operation Earbud Gesture Touch Gesture
Music Play/Pause STB-Ear Virtual Button Click
Music Vol Up T1-Cheek Physical Button Click
Music Vol Down T2-Cheek Physical Button Click
Music Next T1-Mastoid Virtual Button Click
Music Previous T2-Mastoid Virtual Button Click
Call Answer T1-MiddleEar Virtual Button Click
Call Reject T2-MiddleEar Virtual Button Click
Call Mute STB-Ear Physical Button Click

Notification Read STB-Ear - (Read)
Notification Open T1-MiddleEar Notification Click
Notification Delete T2-MiddleEar Notification Slide

Setups
As our system has the advantage to provide eyes-free
interaction, all setups were designed in such a way that the
phone screen was locked at the beginning so interactions were
not visually available initially. Three setups were involved in
the study—one based on EarBuddy and the other two based
on touchscreen input:

• EarBuddy: The smartphone was placed on the table, and
participants used the seven gestures to complete the task.
• Table: The smartphone was also put on the table, but

this time, participants had to interact with the phone by
touchscreen. This required participants to pick up and
unlock the phone and then finish the task.
• Pocket: Participants were asked to wear a jacket and place

the smartphone in the right pocket. They need to remove
the phone from the pocket and then complete the task.

Tasks
We designed three common applications for our study, each
of which required a different set of actions to complete
operations:

• Music Player: Participants controlled music with five
actions: play/pause, volume up, volume down, next song,
and previous song.
• Phone Call: When a phone call came in, participants could

either answer, reject, or mute the call.
• Notifications: Participants consumed a notification by

either hearing it in the EarBuddy setup or by picking up the
phone and reading it in the other two setups. They could
either open the notification for more details or delete it.
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Figure 9 shows the interfaces for the three tasks. Table 3 shows
the mapping between gestures and smartphone operations,
which we pre-determined using pilot testing.

Details
We used a Latin square to assign the ordering of tasks and
interfaces. Within each task, the order of operations were
randomized and each operation appeared three times. We
logged the completion time of every operation and three types
of errors: (1) user errors, where participants performed the
wrong gesture or clicked on a wrong button; (2) segmentation
errors, where participants performed a gesture but EarBuddy
failed to recognize it (false negative) or EarBuddy mistakenly
detected a gesture when none was performed (false positive);
and (3) recognition errors, where EarBuddy did not correctly
recognize a gesture that participants performed. For touch
interaction, the detection and recognition errors were assumed
to be zero. Note that if a user did not complete an operation in
20 seconds, the operation would be skipped.

After completing the three tasks in each setup,
participants completed a 7-point Likert scale NASA-TLX
questionnaire [21] to assess the perceived workload of the
task and the effectiveness of the gestures.

Procedure
Participants first familiarized themselves with the three setups.
The experimenter then introduced the three applications to
the participants. As EarBuddy provides a new interface
that users have never experienced before, we included a
3-minute practice phase for each combination of setup and
task to allow participants to familiarize themselves with the
gesture mappings. Participants followed the instructions
on a laptop screen to complete the required tasks for each
setup. Participants were asked to complete the task as soon
as possible after a beep from the laptop so that each action
could be timed. There was a one-minute break between each
task. After each setup, participants filled out the NASA-TLX
questionnaire for the setup. The study took about 40 minutes.

Results
Participants were able to easily remember the mapping
between EarBuddy gestures and setup actions since nobody
performed an incorrect gesture. Meanwhile, our system
had a low segmentation error rate (4.1% of gestures were
missed) and a low recognition error rate (6.3% of gestures
were incorrectly classified).

Figure 10 top shows the average time participants took to
complete each of the three setups. As the data violated
normality and homoscedasticity assumption, we used analysis
of variance on a generalized linear mixed model (GLMM)
with Gamma family link function [43]. The results indicate
a significant effect on Setup (χ2(2) = 73.0, p < 0.001), but
neither on Task (χ2(2) = 2.1, p = 0.34) nor the interaction
between Setup and Task (χ2(4) = 3.2, p = 0.52). Three
post-hoc paired-samples z-tests on Setup, corrected with
Holm’s sequential Bonferroni procedure, indicate that the
setups were all significantly different (p< 0.001). Participants
completed the EarBuddy setup 33.9% faster than the Table
setup, and 56.2% faster than Pocket setup.

Figure 10: Results of the evaluation study. Top) Time to complete the
tasks. Bottom) Subjective ratings of the three setups

Participants’ subjective feedback of EarBuddy was also
positive, as presented in the bottom of Figure 10. A
generalized linear mixed-effects model analysis of variance
(with ordinal family link function) on each question indicates
a significant effect on Setup for physical demand, (χ2(2) =
7.7, p < 0.05), performance (χ2(2) = 5.7, p < 0.05), and
effort (χ2(2) = 5.8, p < 0.05). For these three questions,
three post-hoc paired-samples Wilcox tests with Bonferroni
procedure correction indicate that EarBuddy has lower
physical demand (V = 2, p < 0.05) and requires less effort
(V = 5, p < 0.05) than Pocket, and that EarBuddy has better
performance than Table (V = 6.5, p < 0.05).

DISCUSSION
We discuss insights on gesture design, how EarBuddy can be
generalized to new users, potential hardware generalizability
and applications, as well as limitations and future work.

Gesture Design for Face and Ear Interaction
We discovered a few insights from our first study when users
explored the entire design space. Users generally preferred
tapping gestures over sliding gestures. Tapping gestures have
similar average simplicity ratings compared to sliding gestures
(both 5.0), but better social acceptability (4.6 vs. 3.9) and
fatigue ratings (4.8 vs. 3.7). Moreover, simple sliding gestures
were preferred over complex sliding gestures as the latter were
viewed to be socially inappropriate (2.6) and fatiguing (3.0).
Users also preferred top-to-bottom and back-to-front sliding
over the reverse directions. The top-to-bottom/back-to-front
gestures had higher ratings in all three attributes (simplicity:
5.3 vs. 4.8, social acceptance: 4.3 vs. 3.6, fatigue: 4.1 vs. 3.3).
This may be due to the fact that moving the finger forward and
downward works with gravity rather than against it, returning
the arm to a more natural position than the reverse.

As for the signal quality, tapping on facial skin generated
louder sounds compared to sliding. Gestures on the ears
also produced louder sounds than gestures behind the ears,
followed by gestures on the cheek, temple, and mandible. This
trend is mainly due to the distance between the microphone
and the gesture surface. Putting these facts together, tapping
gestures on the ear rim produced the strongest signal. Both
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user preferences and signal quality should be considered by
researchers and designers in the future.

Improving Performance for New Users
Individuals have unique ways of performing different gestures.
When performing a double-tap, for example, some users
tap harder the first time than the second, while others do
the opposite. Two users may also tap at slightly different
positions on the cheek when performing a tapping gesture.
Because of these differences, the average accuracy after
leave-one-user-out training (82.1%) was lower than the
accuracy after training across all users (95.3%). However, as
shown in Figure 8, using just five examples per gesture from
the new user raises the accuracy to 90.1%. This illustrates that
introducing a warm-up phase for a new user can efficiently
improve the model’s performance, which can be delivered
in a clever way to avoid burdening new users. E.g., training
examples can be collected while the user walks through a
tutorial on which gestures are supported by a given interface.

Generalizability on Hardware
Our studies of EarBuddy used a single pair of in-ear Samsung
Gear IconX earbuds. However, commercial earbuds have
various form factors that could lead to different acoustic
responses. For example, some earbuds are kept in place
by clips that wrap around the ear (e.g., Powerbeats Pro [6]),
whereas others have a microphone that sticks out like a headset
(e.g., Bose SoundSport Wireless [2]). Increasing the distance
between the microphone and the different gesture surfaces can
weaken the audio signal intensity (SNR). However, having
a microphone that is effectively in the air can better detect
near-audible sounds that are transmitted through the air.
Earbuds that have the microphone embedded within their
main housing may do a better job of distinguishing infrasound
because of their close contact with the skin.

EarBuddy is compatible with other hardware that has a
fixed microphone location around the face/ear as long as the
captured audio has a sufficient SNR; for the 8 gestures we
chose in Study 2, the average SNR is 10.3 dB. Examples of
devices that could potentially be used with EarBuddy include:
Bose headphones [2] have microphones in their main housing;
the HTC Vive [4] has built-in microphones at the bottom center
of the headset; and the HoloLens 2 [3] has two microphone
arrays near the nose pad. Although further investigation is
needed, the microphone position of these devices are close to
the face and ears, thus promising for use in detecting gestures.

Potential Applications
EarBuddy can provide an eyes-free, socially acceptable input
method. Users can interact with devices in a more subtle
way, e.g., during a meeting, in a library, and in an office.
It is suitable for quick reactions such as issuing commands
and handling notifications, as illustrated by the application
examples in our evaluation study. Moreover, EarBuddy can
serve as a convenient input method when a user is using the
device in a hands-free mode, such as when watching videos,
cooking, etc. However, EarBuddy is not suitable for repeated,
continuous interactions, e.g., text entry and interface scrolling.
It also offers potential use cases in AR/VR. Rather than

needing additional input widgets on the headsets, controllers
or 3D finger tracking, EarBuddy can be embedded in a headset
without additional hardware modification.

Limitations and Future Work
There are some important limitations of our work. First, the
hardware we used only allowed the microphone on one side
to be activated at a time, likely for better battery life. This
prevented us from evaluating gestures on the left and right side
of the face simultaneously. There is some work that deals with
the problem by introducing a second smart device (e.g., [76]).
In addition, we eliminated a number of data (22.6%) from the
Study 2. This might be caused by built-in noise cancellation
functions. We will investigate these issues in future work.

Second, we only included noise from an office when
simulating a noisy environment during data collection and
evaluation, but there are other common noise types. One
particularly intriguing source of noise was random face
touches (e.g., scratching one’s face), which could have
generated explicit false positives for gesture detection.
Generalization with this noise remains as an open issue. We
believe that personalized models work better due to differences
in noise, physiology and gestures, but a one-fits-all model
could also achieve good performance if trained on a large
population. We plan to investigate this question by collecting
data from more users to enhance model robustness.

Regarding future work, EarBuddy currently only leverages the
microphone sensor on wireless earbuds. Commercial wireless
earbuds also usually contain other sensors such as an IMU,
which may provide additional information that can enhance
recognition performance. Moreover, earbuds that rely on bone
conduction technology (e.g., AfterShokz Aeropex [1]) provide
a unique opportunity for facial gestures. We hope to include
these additional data sources in future iterations of EarBuddy.

CONCLUSION
We propose EarBuddy, a novel input system using
commercially available wireless earbuds to measure the sound
generated by contact between the finger and skin on the face
and ears. EarBuddy allows users to interact with any device by
simply tapping or sliding on the face and ears. We developed a
design space with 27 gestures and conducted a user study with
16 participants to select a subset of gestures optimized for user
preference, social acceptability, and microphone detectability.
We then conducted a study with 20 users to collect data
for the eight gestures in both quiet and noisy environments.
Machine learning models were trained for gesture detection
and classification, the latter of which was able to identify
gestures with 95.3% accuracy. We embedded the models into a
real-time system to conduct another usability evaluation study
with 12 users. The results indicate that EarBuddy accelerated
input tasks by 33.9–56.2%. Users also preferred EarBuddy
over touchscreen alternatives since EarBuddy allowed them to
interact with devices easily, conveniently, and naturally. Our
work demonstrates how earbud-based sensing can be used
to enable novel interaction techniques, and we hope to see
other researchers leveraging earbuds and other commercial
wearables to support novel forms of interaction.
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